Skip to main content
Log in

Application of CCC–Schoenberg operators on image resampling

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Image resampling is a widely used tool in image processing. The upsampling increases the number of pixels and introduces new information to the image which can have undesired effects, like ringing artifacts and oscillations, aliasing “jagged” lines effect, or introduces too much numerical diffusion. Histopolation upsampling methods produce much sharper images but are more prone to aliasing and ringing effect and oscillations which appear as spurious signals near sharp transitions in color intensity. In this paper, we propose an efficient and fast quasi-histopolation algorithm based on the Canonical Complete Chebyshev–Schoenberg operator approximations, applied dimension by dimension. These approximations, because of their shape preserving properties, avoid oscillations. Presented methods have several tunable parameters that control tension and shape properties of the approximation which are used to reduce the aliasing effect while keeping the image visually sharp. Numerical tests on real and artificial images demonstrate the effectiveness and show the computational efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Available online at http://www.cipr.rpi.edu/resource/stills/kodak.html.

References

  1. Battiato, S., Gallo, G., Stanco, F.: A locally adaptive zooming algorithm for digital images. Image Vis. Comput. 20, 805–812 (2002)

    Article  Google Scholar 

  2. Bosner, T.: Knot insertion algorithms for Chebyshev splines. Ph.D. thesis, Department of Mathematics, University of Zagreb (2006). https://web.math.pmf.unizg.hr/~tinab/TinaBosnerPhD.pdf

  3. Bosner, T., Crković, B., Škifić, J.: Tension splines with application on image resampling. Math. Commun. 19(3), 517–529 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Bosner, T., Rogina, M.: Non-uniform exponential tension splines. Numer. Algorithms 46, 265–294 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bosner, T., Rogina, M.: Variable degree polynomial splines are Chebyshev splines. Adv. Comput. Math. 38, 383–400 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bosner, T., Rogina, M.: Quadratic convergence of approximations by CCC-Schoenberg operators. Numer. Math. 135, 1253–1287 (2017). https://doi.org/10.1007/s00211-016-0831-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Costantini, P.: Shape-preserving interpolation with variable degree polynomial splines. In: Hoschek, J., Kaklis, P.D. (eds.) Advanced Course on FAIRSHAPE, pp. 87–114. Vieweg+Teubner Verlag, Wiesbaden (1996)

    Chapter  Google Scholar 

  8. Costantini, P.: Variable degree polynomial splines. In: Méhauté, A.L., Rabut, C., Schumaker, L.L. (eds.) Curves and Surfaces with Applications in CAGD, pp. 85–94. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  9. Costantini, P.: Curve and surface construction using variable degree polynomial splines. Comput. Aided Geom. Des. 17, 419–446 (2000)

    Article  MathSciNet  Google Scholar 

  10. Costantini, P.: Properties and applications of new polynomial spaces. Int. J. Wavelets Multiresolut. Inf. Process. 4(3), 489–507 (2006)

    Article  MathSciNet  Google Scholar 

  11. Costantini, P., Lyche, T., Manni, C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)

    Article  MathSciNet  Google Scholar 

  12. FFmpeg Developers: ffmpeg tool (version 3.3.4-2) (2017). http://ffmpeg.org/

  13. Gao, R., Song, J., Tai, X.: Image zooming algorithm based on partial differential equations. Int. J. Numer. Anal. Model. 6(2), 284–292 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Getreuer, P.: Image interpolation with geometric contour stencils. Image Process. On Line 1, 98–116 (2011). https://doi.org/10.5201/ipol.2011.g_igcs

    Article  MATH  Google Scholar 

  15. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, New York (1992)

    Google Scholar 

  16. Goodman, T., Mazure, M.L.: Blossoming beyond extended Chebyshev spaces. J. Approx. Theory 109, 48–81 (2001)

    Article  MathSciNet  Google Scholar 

  17. Hou, H.S., Andrews, H.C.: Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoust. Speech Signal Process. 26(6), 508–517 (1978)

    Article  Google Scholar 

  18. ImageMagic Developers: Imagemagick tool (2018). http://www.imagemagick.org/

  19. Kaklis, P.D., Pandelis, D.G.: Convexity preserving polynomial splines of non-uniform degree. IMA J. Numer. Anal. 10, 223–234 (1990)

    Article  MathSciNet  Google Scholar 

  20. Kaklis, P.D., Sapidis, N.S.: Convexity-preserving interpolatory parametric splines of non-uniform polynomial degree. Comput. Aided Geom. Des. 12, 1–26 (1995)

    Article  MathSciNet  Google Scholar 

  21. Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)

    Article  MathSciNet  Google Scholar 

  22. Kvasov, B.I.: Shape-Preserving Spline Approximation. World Scientific, Singapore (2000)

    Book  Google Scholar 

  23. Mazure, M.L.: Quasi-Chebyshev splines with connection matrices: application to variable degree polynomial splines. Comput. Aided Geom. Des. 18, 287–298 (2001)

    Article  MathSciNet  Google Scholar 

  24. Mazure, M.L.: Chebyshev–Schoenberg operators. Constr. Approx. 34, 181–208 (2011)

    Article  MathSciNet  Google Scholar 

  25. Mazure, M.L.: Piecewise Chebyshev–Schoenberg operators: shape preservation, approximation and space embedding. J. Approx. Theory 166, 106–135 (2013)

    Article  MathSciNet  Google Scholar 

  26. Mitchell, D.P., Netravali, A.N.: Reconstruction filters in computer-graphics. Comput. Graph. 22(4), 221–228 (1988)

    Article  Google Scholar 

  27. Pidatella, R.M., Stanco, F., Santaera, C.: ENO/WENO interpolation methods for zooming of digital images. In: Cutello, V., Fotia, G., Puccio, L. (eds.) Applied and Industrial Mathematics in Italy II. Series on Advances in Mathematics for Applied Sciences, vol. 75, pp. 480–491. World Scientific Publishing, Singapore (2007)

    Chapter  Google Scholar 

  28. Robidoux, N., Gong, M., Cupitt, J., Turcotte, A., Martinez, K.: CPU, SMP and GPU implementations of Nohalo level 1, a fast co-convex antialiasing image resampler (2009)

  29. Robidoux, N., Turcotte, A., Gong, M., Tousignant, A.: Fast Exact Area Image Upsampling with Natural Biquadratic Histosplines, pp. 85–96. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  30. Schoenberg, I.J.: Splines and histograms. In: Blanc, C., Ghizzetti, A., Ostrowski, A., Todd, J., van Wijngaarden, A. (eds.) Spline Function and Approximation Theory, ISNM, vol. 21, pp. 277–358. Birkhäuser Verlag, Basel und Stuttgart (1973)

    Chapter  Google Scholar 

  31. Schumaker, L.L.: On Tchebycheffian spline functions. J. Approx. Theory 18, 278–303 (1976)

    Article  MathSciNet  Google Scholar 

  32. Schumaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)

    MATH  Google Scholar 

  33. Strong, D.M., Chan, T.F.: Edge-preserving and scale-dependent properties of total variation regularization. In: Inverse Problems, pp. 165–187 (2000)

  34. Tian, Q., Wen, H., Zhou, C., Chen, W.: A fast edge-directed interpolation algorithm. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) Neural Information Processing, pp. 398–405. Springer, Berlin (2012)

    Chapter  Google Scholar 

  35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  36. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multi-scale structural similarity for image quality assessment. In: Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers, pp. 1398–1402 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Crnković.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Work of the first author has been fully supported by the University of Zagreb, under the project “Numerical algorithms”, year 2018. Work of the second author has been fully supported by the University of Rijeka under the project number uniri-prirod-18-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosner, T., Crnković, B. & Škifić, J. Application of CCC–Schoenberg operators on image resampling. Bit Numer Math 60, 129–155 (2020). https://doi.org/10.1007/s10543-019-00770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00770-7

Keywords

Mathematics Subject Classification

Navigation