Skip to main content
Log in

Direct and integrated radial functions based quasilinearization schemes for nonlinear fractional differential equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this article, two radial basis functions based collocation schemes, differentiated and integrated methods (DRBF and IRBF), are extended to solve a class of nonlinear fractional initial and boundary value problems. Before discretization, the nonlinear problem is linearized using generalized quasilinearization. An interesting proof via generalized monotone quasilinearization for the existence and uniqueness for fractional order initial value problem is given. This convergence analysis also proves quadratic convergence of the generalized quasilinearization method. Both the schemes are compared in terms of accuracy and convergence and it is found that IRBF scheme handles inherent RBF ill-condition better than corresponding DRBF method. Variety of numerical examples are provided and compared with other available results to confirm the efficiency of the schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Antunes, P.R.S., Ferreira, R.A.C.: An augmented-RBF method for solving fractional Sturm–Liouville eigenvalue problems. SIAM J. Sci. Comput. 37(1), A515–A535 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antunes, P.R.S., Ferreira, R.A.C.: Analysis of a class of boundary value problems depending on left and right Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 48, 398–413 (2017)

    Article  MathSciNet  Google Scholar 

  3. Area, I., Losada, J., Nieto, J.J.: A note on the fractional logistic equation. Phys. A 444, 182–187 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bagley, R.L., Torvik, J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)

    Article  MATH  Google Scholar 

  5. Chen, W., Fu, Z.J., Chen, C.S.: Recent Advances in Radial Basis Function Collocation Methods. Springer Briefs in Applied Sciences and Technology. Springer, Heidelberg (2014)

    Book  Google Scholar 

  6. Chen, W., Ye, L., Sun, H.: Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 59(5), 1614–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dehghan, M., Nikpour, A.: Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method. Appl. Math. Model. 37(18–19), 8578–8599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Denton, Z., Ng, P., Vatsala, A.: Quasilinearization method via lower and upper solutions for Riemann–Liouville fractional differential equation. Nonlinear Dyn. Syst. Theory 11(3), 239–252 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Devi, J.V., McRae, F.A., Drici, Z.: Generalized quasilinearization for fractional differential equations. Comput. Math. Appl. 59, 1057–1062 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5(1), 1–6 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Diethelm, K.: The Analysis of Fractional Differential Equations. CRC Press, Boca Raton (2010)

    Book  MATH  Google Scholar 

  12. Diethelm, K.: Increasing the efficiency of shooting methods for terminal value problems of fractional order. J. Comput. Phys. 293, 135–141 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Drábek, P., Milota, J.: Methods of nonlinear analysis. In: Applications to Differential Equations. Birkhäuser, Basel (2013)

  14. Esmaeili, S., Shamsi, M., Dehghan, M.: Numerical solution of fractional differential equations via a Volterra integral equation approach. Cent. Eur. J. Phys. 11(10), 1470–1481 (2013)

    Google Scholar 

  15. Fakhr Kazemi, B., Ghoreishi, F.: Error estimate in fractional differential equations using multiquadratic radial basis functions. J. Comput. Appl. Math. 245, 133–147 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fasshauer, G.F.: Meshfree approximation methods with MATLAB. In: Interdisciplinary Mathematical Sciences, vol. 6. World Scientific, Singapore (2007)

  17. Firoozjaee, M., Yousefi, S., Jafari, H., Baleanu, D.: On a numerical approach to solve multi-order fractional differential equations with initial/boundary conditions. J. Comput. Nonlinear Dyn. 10(6), 061025(1-6) (2015)

    Google Scholar 

  18. Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput. 38(157), 181–200 (1982)

    MathSciNet  MATH  Google Scholar 

  19. Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math. Comput. Simul. 110, 96–112 (2015)

    Article  MathSciNet  Google Scholar 

  20. Ghehsareh, H.R., Heydari Bateni, S., Zaghian, A.: A meshfree method based on the radial basis functions for solution of two-dimensional fractional evolution equation. Eng. Anal. Bound. Elem. 61, 52–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hamarsheh, M., Ismail, A.M., et al.: Analytical approximation for fractional order logistic equation. Int. J. Pure Appl. Math. 115(2), 225–245 (2017)

    Article  Google Scholar 

  22. Huber, S.E., Trummer, M.R.: Radial basis functions for solving differential equations: ill-conditioned matrices and numerical stability. Comput. Math. Appl. 71(1), 319–327 (2016)

    Article  MathSciNet  Google Scholar 

  23. Jaishankar, A., McKinley, G.H.: Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2149), 20120284 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jang, B.: Efficient analytic method for solving nonlinear fractional differential equations. Appl. Math. Model. 38(5), 1775–1787 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kansa, E.J.: Multiquadrics–a scattered data approximation scheme with applications to computational fluid-dynamics—II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8), 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kazem, S.: An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations. Appl. Math. Modell. 37(3), 1126–1136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  28. Lakshmikantham, V., Carl, S., Heikkilä, S.: Fixed point theorems in ordered Banach spaces via quasilinearization. Nonlinear Anal. 71(7–8), 3448–3458 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Magin, R., Ovadia, M.: Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 14(9–10), 1431–1442 (2008)

    Article  MATH  Google Scholar 

  32. Mai-Duy, N.: Solving high order ordinary differential equations with radial basis function networks. Int. J. Numer. Methods Eng. 62(6), 824–852 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mai-Duy, N., Tran-Cong, T.: Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 14(2), 185–199 (2001)

    Article  MATH  Google Scholar 

  34. Miller, K., Samko, S.: Completely monotonic functions. Integral Transfor. Spec. Funct. 12, 389–402 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pang, G., Chen, W., Fu, Z.: Space-fractional advection-dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Parand, K., Abbasbandy, S., Kazem, S., Rad, J.: A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation. Commun. Nonlinear Sci. Numer. Simul. 16(3), 4250–4258 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Piret, C., Hanert, E.: A radial basis functions method for fractional diffusion equations. J. Comput. Phys. 238, 71–81 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Qu, H., Liu, X.: A numerical method for solving fractional differential equations by using neural network. Adv. Math. Phys. pp. Art. ID 439526, 1–12 (2015)

  39. Saeed, U., ur Rehman, M.: Haar wavelet-quasilinearization technique for fractional nonlinear differential equations. Appl. Math. Comput. 220, 630–648 (2013)

  40. Schneider, W.: Completely monotone generalised Mittag-Leffler functions. Expos. Math. 14, 3–16 (1996)

    MATH  Google Scholar 

  41. Sheng, H., Chen, Y., Qiu, T.: Fractional processes and fractional-order signal processing. In: Signals and Communication Technology. Springer, London (2012)

  42. Shu, C., Ding, H., Yeo, K.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 192(7–8), 941–954 (2003)

    Article  MATH  Google Scholar 

  43. Tien, C.M.T., Mai-Duy, N., Tran, C.D., Tran-Cong, T.: A numerical study of compact approximations based on flat integrated radial basis functions for second-order differential equations. Comput. Math. Appl. 72(9), 2364–2387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vijesh, V.A., Kumar, K.: Wavelet based quasilinearization method for semi-linear parabolic initial boundary value problems. Appl. Math. Comput. 266, 1163–1176 (2015)

    MathSciNet  MATH  Google Scholar 

  45. West, B.J.: Exact solution to fractional logistic equation. Phys. A 429, 103–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors are extremely grateful to anonymous reviewers whose constructive and insightful comments have helped in improving the present article significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chandhini.

Additional information

Communicated by Elisabeth Larsson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The proof for \(\widehat{T}{:}\,[v^0,w^0] \subset C[0, T]\rightarrow C[0, T]\) is given as follows. Let \(y(t)=\widehat{T} x(t)\) for some \(x\in [v^0,w^0]\). Hence

$$\begin{aligned} y(t)=x_0E_q(-\mu t^q)+\int _0^t(t-s)^{q-1}E_{q,q}(-\mu (t-s)^{q})(h(s,x(s))+\mu x(s))\mathrm{d}s.\nonumber \\ \end{aligned}$$
(A.1)

To show that y is a continuous function on [0, T], it is enough to show that \(z(t)=\int _0^t(t-s)^{q-1}E_{q,q}(-\mu (t-s)^{q})(h(s,x(s))+\mu x(s))\mathrm{d}s\) is continuous as \(E_q\) is a continuous function.

Define \(g(t,s)=E_{q,q}(-\mu (t-s)^{q})(h(s,x(s))+\mu x(s))\), \((t,s)\in [0,T] \times [0,T]\) and \(g_1(s)=h(s,x(s))+\mu x(s)\), \(s \in [0,T]\). Let K and \(K_1\) be the maximum of |g| and \(|g_1|\) in their respective domains. Also \(E_{q,q}(-\mu (t-s)^{q})\) is uniformly continuous for \((t,s)\in [0,T] \times [0,T]\).

Given \(\epsilon >0\), there exist \(\delta _1>0\) such that \(|E_{q,q}(-\mu (t_1-s)^{q})-E_{q,q}(-\mu (t_2-s)^{q})| \le \frac{q\epsilon }{3K_1T^q}\) whenever \(|t_1-t_2| \le \delta _1\). Further, given \(\epsilon >0\) there exists a \(\delta _2>0\) such that \(|t_1-t_2|^q \le \frac{q\epsilon }{3K}\) whenever \(|t_1-t_2| \le \delta _2\). Let \(t_1 \le t_2\) in [0, T] with \(|t_1-t_2|\le \delta =\min \{\delta _1,\delta _2\}\). Note that \(z(t_1)-z(t_2)=I_1+I_2+I_3\) where

$$\begin{aligned} I_1= & {} \int _0^{t_1}(t_1-s)^{q-1}(E_{q,q}(-\mu (t_1-s)^{q})-E_{q,q}(-\mu (t_2-s)^{q}))g_1(s)\mathrm{d}s;~~~\\ I_2= & {} \int _0^{t_1}((t_1-s)^{q-1}-(t_2-s)^{q-1})g(t_2,s)\mathrm{d}s;~~~I_3=-\int _{t_1}^{t_2}(t_2-s)^{q-1}g(t_2,s)\mathrm{d}s \end{aligned}$$

Consequently

$$\begin{aligned} |I_1|\le & {} \int _0^{t_1}(t_1-s)^{q-1}|E_{q,q}(-\mu (t_1-s)^{q})-E_{q,q}(-\mu (t_2-s)^{q})||g_1(s)|\mathrm{d}s \nonumber \\\le & {} K_1\int _0^{t_1}(t_1-s)^{q-1}|E_{q,q}(-\mu (t_1-s)^{q})-E_{q,q}(-\mu (t_2-s)^{q})|\mathrm{d}s \nonumber \\ \text{ Thus }\,\,|I_1|\le & {} \frac{\epsilon }{3} \end{aligned}$$
(A.2)
$$\begin{aligned} |I_3|\le & {} \int _{t_1}^{t_2}(t_2-s)^{q-1}|g(t_2,s)|\mathrm{d}s~\le ~K\int _{t_1}^{t_2}(t_2-s)^{q-1}\mathrm{d}s \nonumber \\= & {} K_1\int _{0}^{t_2-t_1}\tau ^{q-1}\mathrm{d}\tau =\frac{K}{q} (t_2-t_1)^q \nonumber \\ \text{ Thus }\,\, |I_3|\le & {} \frac{\epsilon }{3} \end{aligned}$$
(A.3)
$$\begin{aligned} |I_2|\le & {} \int _0^{t_1} |(t_1-s)^{q-1}-(t_2-s)^{q-1})||g(t_2,s)|\mathrm{d}s \nonumber \\\le & {} K \int _0^{t_1}|(t_1-s)^{q-1}-(t_2-s)^{q-1}|\mathrm{d}s=K\frac{(t_2-t_1)^q}{q}+K\frac{t_1^q-t_2^q}{q} \nonumber \\ \text{ Thus }\,\, |I_2|\le & {} K\frac{(t_2-t_1)^q}{q} \le \frac{\epsilon }{3} \end{aligned}$$
(A.4)

This implies \(|z(t_1)-z(t_2)| \le \epsilon \) whenever \(|t_1-t_2|\le \delta \). Hence z is a continuous function on [0, T]. Consequently y is continuous in [0, T].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandhini, G., Prashanthi, K.S. & Antony Vijesh, V. Direct and integrated radial functions based quasilinearization schemes for nonlinear fractional differential equations. Bit Numer Math 60, 31–65 (2020). https://doi.org/10.1007/s10543-019-00766-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00766-3

Keywords

Mathematics Subject Classification

Navigation