Skip to main content
Log in

Utilization of Microbial Oil from Poplar Wood Hemicellulose Prehydrolysate for the Production of Polyol Using Chemo-enzymatic Epoxidation

  • Research Paper
  • Bioprocess Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The aim of this work was to demonstrate the production of polyol from microbial oil using wood-based hemicellulose stream through a greener enzymatic process. Yeast biomass concentration of 16.54 ± 0.65 g/L and lipid concentration of 6.97 ± 0.58 g/L were obtained by batch fermentation of hemicellulose prehydrolysate of poplar wood using an oleaginous yeast Cryptococcus curvatus. The produced microbial oil was successfully converted to epoxidized oil catalyzed by lipase with 84.55 ± 1.80% conversion. The epoxidation followed by ring opening reaction to produce polyol with hydroxyl value of 299.53 ± 1.24 mg KOH/g. This showed the possible use of the hemicellulose stream of lignocellulosic biomass to microbial oil and its subsequent conversion to polyol, a precursor to polyurethane and a number of value-added products. This bio-based polyol could be used to substitute the conventional polyols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A i :

Atomic weight of iodine

A 0 :

Atomic weight of oxygen

AIER:

Acid ion exchange resin

CALB:

Candida antarctica lipase

HMF:

Hydroxy methyl furfural

IV:

Iodine value

MO:

Microbial oil

OO exp :

Experimental oxirane value

OO th :

Theorical oxirane value

PHL:

Prehydrolysate liquor

TGA:

Triacylglycerides

References

  1. Miao, S., P. Wang, Z. Su, and S. Zhang (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater. 10: 1692–1704.

    Article  CAS  PubMed  Google Scholar 

  2. Liang, M. H. and J. G. Jiang (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 52: 395–408.

    Article  CAS  PubMed  Google Scholar 

  3. Adrio, J. L. (2017) Oleaginous yeasts: promising platforms for the production of oleochemicals and biofuels. Biotechnol. Bioeng. 114: 1915–1920.

    Article  CAS  PubMed  Google Scholar 

  4. McNutt, J. and Q. S. He (2016) Development of biolubricants from vegetable oils via chemical modification. J. Ind. Eng Chem. 36: 1–12.

    Article  CAS  Google Scholar 

  5. Ratledge, C. (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie. 86: 807–815.

    Article  CAS  PubMed  Google Scholar 

  6. Koutinas, A. A., A. Chatzifragkou, N. Kopsahelis, S. Papanikolaou, and I. K. Kookos (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel. 116: 566–577.

    Article  CAS  Google Scholar 

  7. Boviatsi, E., A. Papadaki, M. N. Efthymiou, G. J. E. Nychas, S. Papanikolaou, J. A. da Silva, D. M. Freire, and A. Koutinas (2020) Valorisation of sugarcane molasses for the production of microbial lipids via fermentation of two Rhodosporidium strains for enzymatic synthesis of polyol esters. J. Chem. Technol. Biotechnol. 95: 402–407.

    Article  CAS  Google Scholar 

  8. Lehoux, R. R. and C. B. Bradt (2014) Solid/fluid separation device and method for treating biomass including solid/fluid separation. US Patent 8,746,138.

    Google Scholar 

  9. Meesters, P. A. E. P., G. N. M. Huijberts, and G. Eggink (1996) High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl. Microbiol. Biotechnol. 45: 575–579.

    Article  CAS  Google Scholar 

  10. Uprety, B. K., S. S. Dalli, and S. K. Rakshit (2017) Bioconversion of crude glycerol to microbial lipid using a robust oleaginous yeast Rhodosporidium toruloides ATCC 10788 capable of growing in the presence of impurities. Energy Convers. Manag. 135: 117–128.

    Article  CAS  Google Scholar 

  11. Manirakiza, P., A. Covaci, and P. Schepens (2001) Comparative study on total lipid determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and modified Bligh & Dyer extraction methods. J. Food Compos. Anal. 14: 93–100.

    Article  CAS  Google Scholar 

  12. Vlček, T. and Z. S. Petrović (2006) Optimization of the chemoenzymatic epoxidation of soybean oil. J. Amer. Oil Chem. Soc. 83: 247–252.

    Article  Google Scholar 

  13. Paquot, C. (2013) Standard Methods for the Analysis of Oils, Fats and Derivatives. 6th ed., pp. 66 and 89. Elsevier, Amsterdam, Nederlands.

    Google Scholar 

  14. Miao, S., S. Zhang, Z. Su, and P. Wang (2013) Synthesis of bio-based polyurethanes from epoxidized soybean oil and isopropanolamine. J. Appl. Polym. Sci. 127: 1929–1936.

    Article  CAS  Google Scholar 

  15. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. National Renewable Energy Laboratory, Golden, CO, USA.

    Google Scholar 

  16. Sluiter, A., B. Hames, D. Hyman, C. Payne, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and J. Wolfe (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, Golden, CO, USA.

    Google Scholar 

  17. Bracharz, F., T. Beukhout, N. Mehlmer, and T. Brück (2017) Opportunities and challenges in the development of Cutaneo-trichosporon oleaginosus ATCC 20509 as a new cell factory for custom tailored microbial oils. Microb Cell. Fact. 16: 178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Yu, X., Y. Zheng, K. M. Dorgan, and S. Chen (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour. Technol. 102: 6134–6140.

    Article  CAS  PubMed  Google Scholar 

  19. Papanikolaou, S. and G. Aggelis (2011) Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur. J. Lipid Sci. Technol. 113: 1031–1051.

    Article  CAS  Google Scholar 

  20. Samavi, M., B. K. Uprety, and S. Rakshit (2019) Bioconversion of poplar wood hemicellulose prehydrolysate to microbial oil using Cryptococcus curvatus. Appl. Biochem. Biotechnol. 189: 626–637.

    Article  CAS  PubMed  Google Scholar 

  21. Soccol, C. R., C. J. Dalmas Neto, V. T. Soccol, E. B. Sydney, E. S. F. da Costa, A. B. P. Medeiros, and L. P. S. Vandenberghe (2017) Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: performance in diesel engine and preliminary economic study. Bioresour. Technol. 223: 259–268.

    Article  CAS  PubMed  Google Scholar 

  22. Carus, M. and L. Dammer (2018) The circular bioeconomy— concepts, opportunities, and limitations. Ind. Biotechnol. 14: 83–91.

    Article  Google Scholar 

  23. Uprety, B. K., J. V. Reddy, S. S. Dalli, and S. K. Rakshit (2017) Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams. Bioresour. Technol. 235: 309–315.

    Article  CAS  PubMed  Google Scholar 

  24. Papadaki, A., K. V. Fernandes, A. Chatzifragkou, E. C. G. Aguieiras, J. A. C. da Silva, R. Fernandez-Lafuente, S. Papanikolaou, A. Koutinas, and D. M. G. Freire (2018) Bioprocess development for biolubricant production using microbial oil derived via fermentation from confectionery industry wastes. Bioresour. Technol. 267: 311–318.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, C., T. F. Garrison, S. A. Madbouly, and M. R. Kessler (2017) Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci. 71: 91–143.

    Article  CAS  Google Scholar 

  26. Sharmin, E., S. M. Ashraf, and S. Ahmad (2007) Synthesis, characterization, antibacterial and corrosion protective properties of epoxies, epoxy-polyols and epoxy-polyurethane coatings from linseed and Pongamia glabra seed oils. Int. J. Biol. Macromol. 40: 407–422.

    Article  CAS  PubMed  Google Scholar 

  27. Saurabh, T., M. Patnaik, S. L. Bhagt, and V. C. Renge (2011) Epoxidation of vegetable oils: a review. Int. J. Adv. Eng. Technol. 2: 491–501.

    Google Scholar 

  28. Tan, S. G. and W. S. Chow (2010) Biobased epoxidized vegetable oils and its greener epoxy blends: a review. Polym Plast. Technol. Eng. 49: 1581–1590.

    Article  CAS  Google Scholar 

  29. Lin, H., J. Y. Liu, H. B. Wang, A. A. Q. Ahmed, and Z. L. Wu (2011) Biocatalysis as an alternative for the production of chiral epoxides: a comparative review. J. Mol. Catal. B Enzym. 72: 77–89.

    Article  CAS  Google Scholar 

  30. Lu, H., S. Sun, Y. Bi, G. Yang, R. Ma, and H. Yang (2010) Enzymatic epoxidation of soybean oil methyl esters in the presence of free fatty acids. Eur. J. Lipid Sci. Technol. 112: 1101–1105.

    Article  CAS  Google Scholar 

  31. Miao, S., S. Zhang, Z. Su, and P. Wang (2008) Chemoenzymatic synthesis of oleic acid-based polyesters for use as highly stable biomaterials. J. Polym. Sci. A. Polym Chem. 46: 4243–4248.

    Article  CAS  Google Scholar 

  32. Sun, S., X. Ke, L. Cui, G. Yang, Y. Bi, F. Song, and X. Xu (2011) Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology. Ind. Crops. Prod. 33: 676–682.

    Article  CAS  Google Scholar 

  33. Ghaly, A. E., D. Dave, M. S. Brooks, and S. Budge (2010) Production of biodiesel by enzymatic transesterification: review. Am. J. Biochem. Biotechnol. 6: 54–76.

    Article  CAS  Google Scholar 

  34. Hasan, F., A. A. Shah, and A. Hameed (2006) Industrial applications of microbial lipases. Enzyme Microb. Technol. 39: 235–251.

    Article  CAS  Google Scholar 

  35. Milchert, E., K. Malarczyk, and M. Kłos (2015) Technological aspects of chemoenzymatic epoxidation of fatty acids, fatty acid esters and vegetable oils: a review. Molecules. 20: 21481–21493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, B., J. Hu, E. M. Miller, W. Xie, M. Cai, and R. A. Gross (2008) Candida antarctica lipase B chemically immobilized on epoxy-activated micro-and nanobeads: catalysts for polyester synthesis. Biomacromolecules. 9: 463–471.

    Article  CAS  PubMed  Google Scholar 

  37. Törnvall, U., C. Orellana-Coca, R. Hatti-Kaul, and D. Adlercreutz (2007) Stability of immobilized Candida antarctica lipase B during chemo-enzymatic epoxidation of fatty acids. Enzyme Microb. Technol. 40: 447–451.

    Article  CAS  Google Scholar 

  38. Sulciene, M., A. Karalius, and I. Matijosyte (2014) Chemoenzymatic route for the production of biopolyol from rapeseed oil. Curr Org Chem. 18: 3037–3043.

    Article  CAS  Google Scholar 

  39. Bajwa, A. S., S. Sathaye, V. M. Kulkarni, and A. V. Patwardhan (2016) Chemoenzymatic epoxidation of Karanja oil: an alternative to chemical epoxidation? Asia. Pac. J. Chem. Eng. 11: 314–322.

    Article  CAS  Google Scholar 

  40. Ortiz, C., M. L. Ferreira, O. Barbosa, J. C. S. dos Santos, R. C. Rodrigues, Á. Berenguer-Murcia, L. E. Briand, and R. Fernandez-Lafuente (2019) Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal. Sci. Technol. 9: 2380–2420.

    CAS  Google Scholar 

  41. Li, Y., X. Luo, and S. Hu (2015) Bio-based Polyols and Polyurethanes. 1st ed., pp. 1–13. Springer International Publishing, Cham, Switzerland.

    Book  Google Scholar 

  42. Veronese, V. B., R. K. Menger, M. M. C. Forte, and C. L. Petzhold (2011) Rigid polyurethane foam based on modified vegetable oil. J. Appl. Polym. Sci. 120: 530–537.

    Article  CAS  Google Scholar 

  43. Wood, G. (1990) The ICI Polyurethanes Book. 2nd ed., pp. 41–42. John Wiley and Sons, NJ, USA.

    Google Scholar 

  44. Kiatsimkul, P. P., G. J. Suppes, F. H. Hsieh, Z. Lozada, and Y. C. Tu (2008) Preparation of high hydroxyl equivalent weight polyols from vegetable oils. Ind. Crops. Prod. 27: 257–264.

    Article  CAS  Google Scholar 

  45. Hazmi, A. S. A., M. M. Aung, L. C. Abdullah, M. Z. Salleh, and M. H. Mahmood (2013) Producing Jatropha oil-based polyol via epoxidation and ring opening. Ind. Crops. Prod. 50: 563–567.

    Article  CAS  Google Scholar 

  46. Zlatanić, A., C. Lava, W. Zhang, and Z. S. Petrović (2004) Effect of structure on properties of polyols and polyurethanes based on different vegetable oils. J. Polym. Sci B. Polym Phys. 42: 809–819.

    Article  CAS  Google Scholar 

  47. Wang, C. S., L. T. Yang, B. L. Ni, and G. Shi (2009) Polyurethane networks from different soy-based polyols by the ring opening of epoxidized soybean oil with methanol, glycol, and 1, 2-propanediol. J. Appl. Polym. Sci. 114: 125–131.

    Article  CAS  Google Scholar 

  48. Monteavaro, L. L., E. O. da Silva, A. P. O. Costa, D. Samios, A. E. Gerbase, and C. L. Petzhold (2005) Polyurethane networks from formiated soy polyols: synthesis and mechanical characterization. J. Amer. Oil Chem. Soc. 82: 365–371.

    Article  CAS  Google Scholar 

  49. Guo, Y., J. H. Hardesty, V. M. Mannari, and J. L. Massingill Jr (2007) Hydrolysis of epoxidized soybean oil in the presence of phosphoric acid. J. Amer. Oil Chem. Soc. 84: 929–935.

    Article  CAS  Google Scholar 

  50. Guo, A., Y. Cho, and Z. S. Petrović (2000) Structure and properties of halogenated and nonhalogenated soy-based polyols. J. Polym. Sci A. Polym Chem. 38: 3900–3910.

    Article  CAS  Google Scholar 

  51. Zhang, J., J. J. Tang, and J. X. Zhang (2015) Polyols prepared from ring-opening epoxidized soybean oil by a castor oil-based fatty diol. Int. J. Polym. Sci. 2015: 529235.

    Article  CAS  Google Scholar 

  52. Abril-Milán, D., O. Valdés, Y. Mirabal-Gallardo, A. F de la Torre, C. Bustamante, and J. Contreras (2018) Preparation of renewable bio-polyols from two species of Colliguaja for rigid polyurethane foams. Materials. 11: 2244.

    Article  PubMed Central  CAS  Google Scholar 

  53. Acar, M., S. Çoban, and B. Hazer (2013) Novel water soluble soya oil polymer from oxidized soya oil polymer and diethanol amine. J. Macromol. Sci. A. 50: 287–296.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Greenfield Global Inc., Chatham, Canada, for the supply of the hemicellulose substrate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Rakshit.

Ethics declarations

Neither ethical approval nor informed consent was required for this study

Additional information

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samavi, M., Rakshit, S. Utilization of Microbial Oil from Poplar Wood Hemicellulose Prehydrolysate for the Production of Polyol Using Chemo-enzymatic Epoxidation. Biotechnol Bioproc E 25, 327–335 (2020). https://doi.org/10.1007/s12257-019-0416-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0416-8

Keywords

Navigation