Skip to main content
Log in

Effective Elimination of Charge-associated Toxicity of Low Generation Polyamidoamine Dendrimer Eases Drug Delivery of Oxaliplatin

  • Research Paper
  • Nanobiotechnology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Polyamidoamine (PAMAM) dendrimer is emerging as an effective nanocarrier for delivering anticancer drugs. Still, unmodified PAMAM dendrimer is hardly used in vivo because of unsatisfied drug release, high tendency of interfering with cellular membranes, and rapid clearance by reticuloendothelial system. In this study, low generation polyamidoamine (PAMAM) dendrimer G3.0 is developed and surface modified with methoxypolyethylene glycol (PAMAM G3.0-mPEG) to overcome its limitations. Specifically, PAMAM G3.0 conjugated with mPEG at different ratios are investigated to effectively eliminate its charge-associated toxicity, in which PAMAM G3.0-mPEG- 8 is chosen for oxaliplatin (OX) loading. Results reveal that OX-loaded PAMAM G3.0-mPEG-8 has desirable size, good entrapment efficiency, and sustained release with minimum drug leakage. In addition, Resazurin assay indicates that the toxicity of loaded OX is reduced as compared to free drug but still maintain substantially anticancer activity on HeLa cells, suggesting the potential application of PAMAM G3.0-mPEG-8 for OX delivery in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luong, D., P. Kesharwani, R. Deshmukh, M. C. I. Mohd Amin, U. Gupta, K. Greish, and A. K. Iyer (2016) PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater. 43: 14–29.

    Article  CAS  Google Scholar 

  2. Nguyen, C. K., N. Q. Tran, T. P. Nguyen, and D. H. Nguyen (2017) Biocompatible nanomaterials based on dendrimers, hydrogels and hydrogel nanocomposites for use in biomedicine. Adv. Nat. Sci. Nanosci. Nanotechnol. 8: 015001.

    Article  Google Scholar 

  3. Jiang, Y. Y., G. T. Tang, L. H. Zhang, S. Y. Kong, S. J. Zhu, and Y. Y. Pei (2010) PEGylated PAMAM dendrimers as a potential drug delivery carrier: in vitro and in vivo comparative evaluation of covalently conjugated drug and noncovalent drug inclusion complex. J. Drug Target. 18: 389–403.

    Article  CAS  Google Scholar 

  4. Tran, N. Q., C. K. Nguyen, and T. P. Nguyen (2013) Dendrimerbased nanocarriers demonstrating a high efficiency for loading and releasing anticancer drugs against cancer cells in vitro and in vivo. Adv. Nat. Sci. Nanosci. Nanotechnol. 4: 045013.

    Article  Google Scholar 

  5. Singh, S. K., G. K. Lohiya, P. P. Limburkar, N. B. Dharbale, and V. K. Mourya (2014) Dendrimer a versatile polymer in drug delivery. Asian J. Pharm. 3: 178–187.

    Article  Google Scholar 

  6. Ho, M. N., L. G. Bach, D. H. Nguyen, C. H. Nguyen, C. K. Nguyen, N. Q. Tran, N. V. Nguyen, and T. T. H. Thi (2019) PEGylated PAMAM dendrimers loading oxaliplatin with prolonged release and high payload without burst effect. Biopolymers. 110: e23272.

    Article  Google Scholar 

  7. Nguyen, D. T. D., L. G. Bach, T. H. Nguyen, M. H. Ho, M. N. Ho, D. H. Nguyen, C. K. Nguyen, and T. T. H. Thi (2019) Preparation and characterization of oxaliplatin drug delivery vehicle based on PEGylated half-generation PAMAM dendrimer. J. Polym. Res. 26: 116.

    Article  Google Scholar 

  8. Liao, H., H. Liu, Y. Li, M. Zhang, H. Tomás, M. Shen, and X. Shi (2014) Antitumor efficacy of doxorubicin encapsulated within PEGylated poly (amidoamine) dendrimers. J. Appl. Polym. Sci. 131: 40358.

    Google Scholar 

  9. Sommerfeld, N. S., M. Hejl, M. H. Klose, E. Schreiber-Brynzak, A. Bileck, S. M. Meier, C. Gerner, M. A. Jakupec, M. Galanski, and B. K. Keppler (2017) Low-generation polyamidoamine dendrimers as drug carriers for platinum (IV) complexes. Eur. J. Inorg. Chem. 2017: 1713–1720.

    Article  CAS  Google Scholar 

  10. Nguyen, D. H., J. S. Lee, J. H. Choi, K. M. Park, Y. Lee, and K. D. Park (2016) Hierarchical self-assembly of magnetic nanoclusters for theranostics: tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery. Acta Biomater. 35: 109–117.

    Article  CAS  Google Scholar 

  11. Ly, T. U., N. Q. Tran, T. K. Hoang, K. N. Phan, H. N. Truong, and C. K. Nguyen (2013) Pegylated dendrimer and its effect in fluorouracil loading and release for enhancing antitumor activity. J. Biomed. Nanotechnol. 9: 213–220.

    Article  CAS  Google Scholar 

  12. Nguyen, T. L., T. H. Nguyen, C. K. Nguyen, and Nguyen (2017) Redox and pH responsive poly (amidoamine) dendrimerheparin conjugates via disulfide linkages for letrozole delivery. Biomed. Res. Int. 2017: 8589212.

    PubMed  PubMed Central  Google Scholar 

  13. Vu, M. T., L. G. Bach, D. C. Nguyen, M. N. Ho, N. H. Nguyen, N. Q. Tran, D. H. Nguyen, C. K. Nguyen, and T. T. H. Thi (2019) Modified carboxyl-terminated PAMAM dendrimers as great cytocompatible nano-based drug delivery system. Int. J. Mol. Sci. 20: 2016.

    Article  CAS  Google Scholar 

  14. Ho, M. N., L. G. Bach, T. H. Nguyen, M. H. Ho, D. H. Nguyen, C. K. Nguyen, C. H. Nguyen, N. V. Nguyen, and T. T. H. Thi (2019) PEGylated poly (amidoamine) dendrimers-based drug loading vehicles for delivering carboplatin in treatment of various cancerous cells. J. Nanopart Res. 21: 43.

    Article  Google Scholar 

  15. Hu, W., L. Cheng, L. Cheng, M. Zheng, Q. Lei, Z. Hu, M. Xu, Qiu, and D. Chen (2014) Redox and pH-responsive poly (amidoamine) dendrimer-poly (ethylene glycol) conjugates with disulfide linkages for efficient intracellular drug release. Colloids Sur. B Biointerfaces. 123: 254–263.

    Article  CAS  Google Scholar 

  16. Buczkowski, A., D. Waliszewski, P. Urbaniak, and B. Palecz (2016) Study of the interactions of PAMAM G3-NH2 and G3- OH dendrimers with 5-fluorouracil in aqueous solutions. Int. J. Pharm. 505: 1–13.

    Article  CAS  Google Scholar 

  17. Shah, N., R. J. Steptoe, and H. S. Parekh (2011) Low-generation asymmetric dendrimers exhibit minimal toxicity and effectively complex DNA. J. Pept. Sci. 17: 470–478.

    Article  CAS  Google Scholar 

  18. Yang, H., S. T. Lopina, L. P. DiPersio, and S. P. Schmidt (2008) Stealth dendrimers for drug delivery: correlation between PEGylation, cytocompatibility, and drug payload. J. Mater. Sci. Mater. Med. 19: 1991–1997.

    Article  CAS  Google Scholar 

  19. Nguyen, A. K., T. H. Nguyen, B. Q. Bao, L. G. Bach, and D. H. Nguyen (2018) Efficient self-assembly of mPEG end-capped porous silica as a redox-sensitive nanocarrier for controlled doxorubicin delivery. Int. J. Biomater. 2018: 1575438.

    Article  Google Scholar 

  20. Kim, Y., A. M. Klutz, and K. A. Jacobson (2008) Systematic investigation of polyamidoamine dendrimers surface-modified with poly (ethylene glycol) for drug delivery applications: synthesis, characterization, and evaluation of cytotoxicity. Bioconjugate Chem. 19: 1660–1672.

    Article  CAS  Google Scholar 

  21. Sarkar, K. and H. Yang (2008) Encapsulation and extended release of anti-cancer anastrozole by stealth nanoparticles. Drug Deliv. 15: 343–346.

    Article  CAS  Google Scholar 

  22. Tran, D. H. N., T. H. Nguyen, T. N. N. Vo, L. P. T. Pham, D. M. H. Vo, C. K. Nguyen, L. G. Bach, and D. H. Nguyen (2019) Selfassembled poly (ethylene glycol) methyl ether-grafted gelatin nanogels for efficient delivery of curcumin in cancer treatment. J. Appl. Polym. Sci. 136: 47544.

    Article  Google Scholar 

  23. Jevprasesphant, R., J. Penny, R. Jalal, D. Attwood, N. B. McKeown, and A. D’Emanuele (2003) The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 252: 263–266.

    Article  CAS  Google Scholar 

  24. Karthikeyan, R., O. S. Koushik, and V. P. Kumar (2016) Surface modification of cationic dendrimers eases drug delivery of anticancer drugs. Nano Sci. Nano Technol. 10: 109.

    Google Scholar 

  25. Dilruba, S. and G. V. Kalayda (2016) Platinum-based drugs: past, present and future. Cancer Chemother. Pharmacol. 77: 1103–1124.

    Article  CAS  Google Scholar 

  26. Marques, M. P. M. (2013) Platinum and palladium polyamine complexes as anticancer agents: the structural factor. Int. Sch. Res. Notices. 2013: 287353.

    Google Scholar 

  27. Lee, P. C., C. Y. Lin, C. L. Peng, and M. J. Shieh (2016) Development of a controlled-release drug delivery system by encapsulating oxaliplatin into SPIO/MWNT nanoparticles for effective colon cancer therapy and magnetic resonance imaging. Biomater. Sci. 4: 1742–1753.

    Article  CAS  Google Scholar 

  28. Vivek, R., R. Thangam, V. Nipunbabu, T. Ponraj, and S. Kannan (2014) Oxaliplatin-chitosan nanoparticles induced intrinsic apoptotic signaling pathway: A “smart” drug delivery system to breast cancer cell therapy. Int. J. Biol. Macromol. 65: 289–297.

    Article  CAS  Google Scholar 

  29. Dutta, R. K. and S. Sahu (2012) Development of oxaliplatin encapsulated in magnetic nanocarriers of pectin as a potential targeted drug delivery for cancer therapy. Results Pharma Sci. 2: 38–45.

    Article  Google Scholar 

  30. Brown, S. D., P. Nativo, J. A. Smith, D. Stirling, P. R. Edwards, B. Venugopal, D. J. Flint, J. A. Plumb, D. Graham, and N. J. Wheate (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc. 132: 4678–4684.

    Article  CAS  Google Scholar 

  31. Thanh, V. M., T. H. Nguyen, T. V. Tran, U. P. Ngoc, M. N. Ho, T. T. Nguyen, Y. N. T. Chau, V. T. Le, N. Q. Tran, C. K. Nguyen, and D. H. Nguyen (2018) Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release. Mater. Sci. Eng. C Mater. Biol. Appl. 82: 291–298.

    Article  CAS  Google Scholar 

  32. Tong, N. A. N., T. H. Nguyen, D. H. Nguyen, C. K. Nguyen, and N. Q. Tran (2015) Preparation of the cationic dendrimer-based hydrogels for controlled heparin release. J. Macromol. Sci. Part A. 52: 830–837.

    Article  CAS  Google Scholar 

  33. Bao, B. Q., N. H. Le, D. H. T. Nguyen, T. V. Tran, L. P. T. Pham, L. G. Bach, H. M. Ho, T. H. Nguyen, and D. H. Nguyen (2018) Evolution and present scenario of multifunctionalized mesoporous nanosilica platform: A mini review. Mater. Sci. Eng. C Mater. Biol. Appl. 91: 912–928.

    Article  CAS  Google Scholar 

  34. Thi, T. N. L., T. H. Nguyen, D. Q. Hoang, T. V. Tran, N. T. Nguyen, and D. H. Nguyen (2017) Development of new magnetic nanoparticles: Oligochitosan obtained by γ-rays and- coated Fe3O4 nanoparticles. Appl. Surf. Sci. 422: 863–868.

    Article  Google Scholar 

  35. Nguyen, D. H., J. W. Bae, J. H. Choi, J. S. Lee, and K. D. Park (2013) Bioreducible cross-linked Pluronic micelles: pH-triggered release of doxorubicin and folate-mediated cellular uptake. J. Bioact. Compat. Polym. 28: 341–354.

    Article  CAS  Google Scholar 

  36. Thi, T. T. H., D. H. N. Tran, L. G. Bach, Q. H. Vu, D. C. Nguyen, K. D. Park, and D. H. Nguyen (2019) Functional magnetic coreshell system-based iron oxide nanoparticle coated with biocompatible copolymer for anticancer drug delivery. Pharmaceutics. 11: e120.

    Article  Google Scholar 

  37. Babu, A., J. Periasamy, A. Gunasekaran, G. Kumaresan, S. Naicker, P. Gunasekaran, and R. Murugesan (2013) Polyethylene glycol-modified gelatin/polylactic acid nanoparticles for enhanced photodynamic efficacy of a hypocrellin derivative in vitro. J. Biomed. Nanotechnol. 9: 177–192.

    Article  CAS  Google Scholar 

  38. Narmani, A., M. Kamali, B. Amini, A. Salimi, and Y. Panahi (2018) Targeting delivery of oxaliplatin with smart PEG-modified PAMAM G4 to colorectal cell line: In vitro studies. Process Biochem. 69: 178–187.

    Article  CAS  Google Scholar 

  39. Ebrahimifar, M., A. Nili-Ahmadabadi, A. Akbarzadeh, H. E. Shahemabadi, M. Hasanzadegan, H. Moradi-Sardareh, H. Madadizadeh, and J. Rezaee-diyan (2017) Preparation, characterization and cytotoxic effects of pegylated nanoliposomal containing carboplatin on ovarian cancer cell lines. Indian J. Clin. Biochem. 32: 230–234.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thai Thanh Hoang Thi.

Ethics declarations

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Electronic supplementary material

12257_2019_47_MOESM1_ESM.pdf

Effective Elimination of Charge-associated Toxicity of Low Generation Polyamidoamine Dendrimer Eases Drug Delivery of Oxaliplatin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, V.M.H., Bach, L.G., Tran, DH.N. et al. Effective Elimination of Charge-associated Toxicity of Low Generation Polyamidoamine Dendrimer Eases Drug Delivery of Oxaliplatin. Biotechnol Bioproc E 25, 224–234 (2020). https://doi.org/10.1007/s12257-019-0047-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0047-0

Keywords

Navigation