Skip to main content
Log in

Nanostructured Polypyrrole as Cathode Catalyst for Fe (III) Removal in Single Chamber Microbial Fuel Cell

  • Research Paper
  • Bioprocess Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Polypyrrole nanoparticle (Ppy-NP) modified carbon cloth (CC) was fabricated as the cathode for single chamber membrane less microbial fuel cell (SCMFC) for bio-energy production and iron removal using Shewanella putrefaciens as a microbial catalyst. The performance of CC coated with Ppy was compared with that of pure platinum (Pt), the conventional cathode catalyst. The cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel were done to study the electro catalytic activity of modified cathode and showed lower charge transfer resistance and high conductivity. The systems were served with wastewater containing the heavy metal, Iron and the maximum power density and coulombic efficiency obtained with PPy NP was found to be ~190 ± 4 mW/m2 and 10.1 ± 2% respectively, whereas the measured values for Pt catalyst were 278 ± 4 mW/m2 and 13.3 ± 3% respectively. The removal efficiency of both Iron and TOC were found to be greater than 80% for both the electrodes. The results of CC-Ppy show a noticeable comparison with CC-Pt and indicate its possibility of use in MFC as low cost cathode catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gude, V. G. (2016) Wastewater treatment in microbial fuel cells - An overview. J. Clean Prod. 122: 287–307.

    Article  CAS  Google Scholar 

  2. Walcarius, A., S. D. Minteer, J. Wang, Y. Lin, and A. Merkoçi (2013) Nanomaterials for bio-functionalized electrodes: recent trends. J. Mater. Chem. B. 1: 4878–4908.

    Article  CAS  Google Scholar 

  3. Mustakeem (2015) Electrode materials for microbial fuel cells: Nanomaterial approach. Mater. Renew. Sustain Energy. 4: 22.

    Article  Google Scholar 

  4. Sonawane, J. M., A. Yadav, P. C. Ghosh, and S. B. Adeloju (2017) Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens. Bioelectron. 90: 558–576.

    Article  CAS  Google Scholar 

  5. Hernández-Fernández, F. J., A. Pérez de los Ríos, M. J. Salar-Garcia, V. M. Ortiz-Martinez, L. J. Lozano-Blanco, C. Godinez, F. Tomas-Alonso, and J. Quesada-Medina (2015) Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Process Technol. 138: 284–297.

    Article  Google Scholar 

  6. He, C. S., Z. X. Mu, H. Y. Yang, Y. Z. Wang, Y. Mu, and H. Q. Yu (2015) Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review. Chemosphere. 140: 12–17.

    Article  CAS  Google Scholar 

  7. Logan, B. E, C. Murano, K. Scott, N. D. Gray, and I. M. Head (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res. 39: 942–952.

    Article  CAS  Google Scholar 

  8. Minteer, S. D., P. Atanassov, H. R. Luckarift, and G. R. Johnson (2012) New materials for biological fuel cells. Mater. Today. 15: 166–173.

    Article  CAS  Google Scholar 

  9. Yuan, H., Y. Hou, I. M. Abu-Reesh, J. Chen, and Z. He (2016) Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: A review. Mater. Horizons. 3: 382–401.

    Article  CAS  Google Scholar 

  10. Yuan, H. and Z. He (2015) Graphene-modified electrodes for enhancing the performance of microbial fuel cells. Nanoscale. 7: 7022–7029.

    Article  CAS  Google Scholar 

  11. Ghasemi, M., W. R. W. Daud, S. H. A. Hassan, T. Jafary, M. Rahimnejad, A. Ahmad, and M. H. Yazdi (2016) Carbon nanotube / polypyrrole nanocomposite as a novel cathode catalyst and proper alternative for Pt in microbial fuel cell. Int. J. Hydrogen Energy. 41: 4872–4878.

    Article  CAS  Google Scholar 

  12. Lepage, G., F. O. Albernaz, G. Perrier, and G. Merlin (2012) Characterization of a microbial fuel cell with reticulated carbon foam electrodes. Bioresour. Technol. 124: 199–207.

    Article  CAS  Google Scholar 

  13. Li, C., L. Ding, H. Cui, L. Zhang, K. Xu, and H. Ren (2012) Application of conductive polymers in biocathode of microbial fuel cells and microbial community. Bioresour. Technol. 116: 459–465.

    Article  CAS  Google Scholar 

  14. Ghoreishi, K. B., M. Ghasemi, M. Rahimnejad, M. A. Yarmo, W. R. W. Daud, N. Asim, and M. Ismail (2014) Development and application of vanadium oxide / polyaniline composite as a novel cathode catalyst in microbial fuel cell. Int. J. Energy Res. 38: 70–77.

    Article  CAS  Google Scholar 

  15. Dutta, K. and P. P. Kundu (2014) A review on aromatic conducting polymers-based catalyst supporting matrices for application in microbial fuel cells. Polym. Rev. 54: 401–435.

    Article  CAS  Google Scholar 

  16. Ge, Z. and Z. He (2016) Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: Treatment, energy, and cost. Environ. Sci.: Water Res. Technol. 2: 274–281.

    CAS  Google Scholar 

  17. Khatri, N., S. Tyagi, and D. Rawtani (2017) Recent strategies for the removal of iron from water: A review. J. Water Process Eng. 19: 291–304.

    Article  Google Scholar 

  18. Mahmoudkhani, R., A. Torabian, A. H. Hassani, and R. Mahmoudkhani (2014) Copper, cadmium and ferrous removal by membrane bioreactor. APCBEE Procedia. 10: 79–83.

    Article  CAS  Google Scholar 

  19. Li, Y. Y. Wu, S. Puranik, Y. Lei, T. Vadas, and B. Li (2014) Metals as electron acceptors in single-chamber microbial fuel cells. J. Power Sources. 269: 430–439.

    Article  CAS  Google Scholar 

  20. Pang, Y., D. Xie, B. Wu, Z. Lv, X. Zeng, C. Wei, and C. Feng (2013) Conductive polymer-mediated Cr(VI) reduction in a dual-chamber microbial fuel cell under neutral conditions. Synth. Met. 183: 57–62.

    Article  CAS  Google Scholar 

  21. Middaugh, J., S. Cheng, W. Liu, and R. Wagner (2006) How to make cathodes with a diffusion layer for single-chamber microbial fuel cells.

    Google Scholar 

  22. Sumisha, A. and K. Haribabu (2018) Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications-a comparative study. Int. J. Hydrogen Energy. 43: 3308–3316.

    Article  CAS  Google Scholar 

  23. Eisazadeh, H. (2007) Studying the characteristics of polypyrrole and its composites. World J. Chem. 2: 67–74.

    Google Scholar 

  24. Yu, T. T., H. L. Liu, M. Huang, J. H. Zhang, D. Q. Su, Z. H. Tang, J. F. Xie, Y. J. Liu, A. H. Yuan, and Q. H. Kong (2017) Zn2GeO4 nanorods grown on carbon cloth as high performance flexible lithium-ion battery anodes. RSC Adv. 7: 51807–51813.

    Article  CAS  Google Scholar 

  25. Hazarika, J. and A. Kumar (2016) Studies of structural, optical, dielectric relaxation and a conductivity of different alkylbenzenesulfonic acids doped polypyrrole nanofibers. Physica B Condens Matter. 481: 268–279.

    Article  CAS  Google Scholar 

  26. Abourached, C., T. Catal, and H. Liu (2014) Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res. 51: 228–233.

    Article  CAS  Google Scholar 

  27. APHA, AWA, WPCF (1999) Standard Methods for the Examination of Water and Wastewater.

    Google Scholar 

  28. Wang, Y., J. Wu, S. Yang, H. Li, and X. Li (2018) Electrode modification and optimization in air-cathode single-chamber microbial fuel cells. Int. J. Environ. Res. Public. Health. 15: 1349.

    Article  Google Scholar 

  29. Singh, S. and N. Verma (2014) Fabrication of Ni nanoparticles-dispersed carbon micro-nanofibers as the electrodes of a microbial fuel cell for bio-energy production. Int. J. Hydrogen Energy. 40: 1145–1153.

    Article  Google Scholar 

  30. Zhao, S., Y. Li, H. Yin, Z. Liu, E. Luan, F. Zhao, Z. Tang, and S. Liu (2015) Three-dimensional graphene / Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci. Adv. 1: e1500372.

    Google Scholar 

  31. Nourbakhsh, F., M. Pazouki, and M. Mohsennia (2017) Impact of modified electrodes on boosting power density of microbial fuel cell for effective domestic wastewater treatment: A case study of Tehran. J. Fuel Chem. Technol. 45: 871–879.

    Article  CAS  Google Scholar 

  32. Shen, C., Y. Sun, W. Yao, and Y. Lu (2014) Facile synthesis of polypyrrole nanospheres and their carbonized products for potential application in high-performance supercapacitors. Polymer. 55: 2817–2824.

    Article  CAS  Google Scholar 

  33. Shewa, W. A., S. R. Chaganti, and J. A. Lalman (2013) Electricity generation and biofilm formation in microbial fuel cells using plate anodes constructed from various grades of graphite. J. Green Engergy. 4: 13–32.

    Article  Google Scholar 

  34. Christgen, B. (2011) Electricity Generation From Wastewater Using Microbial Fuel Cells’: a Study of Electrode and Membrane Materials. Ph.D. Thesis. Newcastle University, Newcastle, UK.

    Google Scholar 

Download references

Acknowledgements

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Haribabu.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumisha, A., Haribabu, K. Nanostructured Polypyrrole as Cathode Catalyst for Fe (III) Removal in Single Chamber Microbial Fuel Cell. Biotechnol Bioproc E 25, 78–85 (2020). https://doi.org/10.1007/s12257-019-0288-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0288-y

Keywords

Navigation