Skip to main content
Log in

Comparison and Analysis of Published Genome-scale Metabolic Models of Yarrowia lipolytica

  • Research Paper
  • Metabolic Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Background

Genome-scale metabolic models (GEMs) are powerful tools for predicting metabolic flux distributions, understanding complex cell physiology, and guiding the improvement of cell metabolism and production. Yarrowia lipolytica is known for its ability to accumulate lipids and has been widely employed to produce many important metabolites as an ideal host microorganism. There are six GEMs reconstructed for this strain by different research groups, which, however, may cause confusion for model users. It is therefore necessary to understand and analyze the existing models comprehensively.

Results

Different simulation results of the published GEMs of Y. lipolytica were analyzed based on experimental data, in order to understand the differences among models and identify whether there were common problems in model construction. First, specific growth rates (μ) under various culture conditions were simulated by different models, showing that the biomass generation equation in models had significant influence on the accuracy of simulation results. In addition, simulation and analysis of intracellular flux distributions revealed several inaccurate descriptions on the reversibility of reactions involving currency metabolites in the models. Finally, specific metabolite formation rates were predicted for different target products, and large discrepancies among the different models were observed. The corresponding solutions were then proposed according to the findings of the above model problems.

Conclusions

We have corrected the existing GEMs of Y. lipolytica and the prediction performances of the models have been significantly improved. Several suggestions for better construction and refinement of genome-scale metabolic network models were also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feist, A. M., M. J. Herrgard, I. Thiele, J. L. Reed, and B. O. Palsson (2009) Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 7: 129–143.

    Article  CAS  Google Scholar 

  2. Lopes, H. and I. Rocha (2017) Genome-scale modeling of yeast: chronology, applications and critical perspectives. FEMS Yeast Res. 17: fox050.

    Article  Google Scholar 

  3. Covert, M. W., C. H. Schilling, I. Famili, J. S. Edwards, I. I. Goryanin, E. Selkov, and B. O. Palsson (2001) Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26: 179–186.

    Article  CAS  Google Scholar 

  4. Thiele, I. and B. O. Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5: 93–121.

    Article  CAS  Google Scholar 

  5. Zhuang, Z., M. Huang, and J. Chu (2018) In silico reconstruction and experimental validation of Saccharopolyspora erythraea genome-scale metabolic model iZZ1342 that accounts for 1685 ORFs. Bioresour. Bioprocess. 5: 26.

    Article  Google Scholar 

  6. O’Brien, E. J., J. M. Monk, and B. O. Palsson (2015) Using genome-scale models to predict biological capabilities. Cell. 161: 971–987.

    Article  Google Scholar 

  7. van Heck, R. G. M. Ganter, V. A. Martins Dos Santos, and J. Stelling (2016) Efficient reconstruction of predictive consensus metabolic network models. PLoS Comput. Biol. 12: e1005085.

    Article  Google Scholar 

  8. Heavner, B. D. and N. D. Price (2015) Comparative analysis of yeast metabolic network models highlights progress, opportunities for metabolic reconstruction. PLoS Comput. Biol. 11: e1004530.

    Article  Google Scholar 

  9. Goncalves, F. A., G. Colen, and J. A. Takahashi (2014) Yarrowia lipolytica and its multiple applications in the biotechnological industry. ScientificWorldJournal. 2014: 476207.

    Article  CAS  Google Scholar 

  10. Ledesma-Amaro, R. and J. M. Nicaud (2016) Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog. Lipid Res. 61: 40–50.

    Article  CAS  Google Scholar 

  11. Beopoulos, A., J. Cescut, R. Haddouche, J. L. Uribelarre, C. Molina-Jouve, and J. M. Nicaud (2009) Yarrowia lipolytica as a model for bio-oil production. Prog. Lipid Res. 48: 375–387.

    Article  CAS  Google Scholar 

  12. Wang, Q., S. Quan, and H. Xiao (2019) Towards efficient terpenoid biosynthesis: manipulating IPP and DMAPP supply. Bioresour. Bioprocess. 6: 6.

    Article  CAS  Google Scholar 

  13. Dulermo, R., H. Gamboa-Melendez, R. Ledesma-Amaro, F. Thevenieau, and J. M. Nicaud (2015) Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica. Biochim. Biophys. Acta. 1851: 1202–1217.

    Article  CAS  Google Scholar 

  14. Zhu, Q. and E. N. Jackson (2015) Metabolic engineering of Yarrowia lipolytica for industrial applications. Curr. Opin. Biotechnol. 36: 65–72.

    Article  Google Scholar 

  15. Liu, H. H., X. J. Ji, and H. Huang (2015) Biotechnological applications of Yarrowia lipolytica: Past, present and future. Biotechnol. Adv. 33: 1522–1546.

    Article  Google Scholar 

  16. Blazeck, J., L. Liu, R. Knight, and H. S. Alper (2013) Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J. Biotechnol. 165: 184–194.

    Article  CAS  Google Scholar 

  17. Celinska, E., P. Kubiak, W. Bialas, M. Dziadas, and W. Grajek (2013) Yarrowia lipolytica: the novel and promising 2-phenylethanol producer. J. Ind. Microbiol. Biotechnol. 40: 389–392.

    Article  CAS  Google Scholar 

  18. Kamzolova, S. V., N. G. Vinokurova, J. N. Lunina, N. F. Zelenkova, and I. G Morgunov (2015) Production of technicalgrade sodium citrate from glycerol-containing biodiesel waste by Yarrowia lipolytica. Bioresour. Technol. 193: 250–255.

    Article  CAS  Google Scholar 

  19. Rakicka, M., A. Rywinska, K. Cybulski, and W. Rymowicz (2016) Enhanced production of erythritol and mannitol by Yarrowia lipolytica in media containing surfactants. Braz. J. Microbiol. 47: 417–423.

    Article  CAS  Google Scholar 

  20. Kavscek, M., G. Bhutada, T. Madl, and K. Natter (2015) Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC Syst. Biol. 9: 72.

    Article  Google Scholar 

  21. Kerkhoven, E. J., K. R. Pomraning, S. E. Baker, and J. Nielsen (2016) Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. NPJ Syst. Biol. Appl. 2: 16005.

    Article  CAS  Google Scholar 

  22. Pan, P. and Q. Hua (2012) Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS One. 7: e51535.

    Article  CAS  Google Scholar 

  23. Wei, S., X. Jian, J. Chen, C. Zhang, and Q. Hua (2017) Reconstruction of genome-scale metabolic model of Yarrowia lipolytica and its application in overproduction of triacylglycerol. Bioresour. Bioprocess. 4: 51.

    Article  Google Scholar 

  24. Mishra, P., N. R. Lee, M. Lakshmanan, M. Kim, B. G. Kim, and D. Y. Lee (2018) Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica. BMC Syst. Biol. 12: 12.

    Article  Google Scholar 

  25. Loira, N., T. Dulermo, J. M. Nicaud, and D. J. Sherman (2012) A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Syst. Biol. 6: 35.

    Article  Google Scholar 

  26. Lewis, N. E., K. K. Hixson, T. M. Conrad, J. A. Lerman, P. Charusanti, A. D. Polpitiya, J. N. Adkins, G. Schramm, S. O. Purvine, D. Lopez-Ferrer, K. K. Weitz, R. Eils, R. Konig, R. D. Smith, and B. O. Palsson (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6: 390.

    Article  Google Scholar 

  27. Becker, S. A., A. M. Feist, M. L. Mo, G. Hannum, B. O. Palsson, and M. J. Herrgard (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat. Protoc. 2: 727–738.

    Article  CAS  Google Scholar 

  28. Chan, S. H. J., J. Cai, L. Wang, M. N. Simons-Senftle, and C. D. Maranas (2017) Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models. Bioinformatics. 33: 3603–3609.

    Article  CAS  Google Scholar 

  29. Sauls, J. T. and J. M. Buescher (2014) Assimilating genome-scale metabolic reconstructions with model Borgifier. Bioinformatics. 30: 1036–1038.

    Article  CAS  Google Scholar 

  30. Jamialahmadi, O., E. Motamedian, and S. Hashemi-Najafabadi (2016) BiKEGG: a COBRA toolbox extension for bridging the BiGG and KEGG databases. Mol. Biosyst. 12: 3459–3466.

    Article  CAS  Google Scholar 

  31. Schellenberger, J., J. O. Park, T. M. Conrad, and B. O. Palsson (2010) BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics. 11: 213.

    Article  Google Scholar 

  32. Kanehisa, M., M. Araki, S. Goto, M. Hattori, M. Hirakawa, M. Itoh, T. Katayama, S. Kawashima, S. Okuda, T. Tokimatsu, and Y. Yamanishi (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36: D480–D484.

    Article  CAS  Google Scholar 

  33. Riemer, S. A., R. Rex, and D. Schomburg (2013) A metabolitecentric view on flux distributions in genome-scale;metabolic models. BMC Syst. Biol. 7: 33.

    Article  Google Scholar 

  34. Chung, B. K. S. and D. Y. Lee (2009) Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network. BMC Syst. Biol. 3: 117.

    Article  Google Scholar 

  35. Timoumi, A., M. Cleret, C. Bideaux, S. E. Guillouet, Y. Allouche, C. Molina-Jouve, L. Fillaudeau, and N. Gorret (2017) Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode. Appl. Microbiol. Biotechnol. 101: 351–366.

    Article  CAS  Google Scholar 

  36. Ochoa-Estopier, A. and S. E. Guillouet (2014) D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica. J. Biotechnol. 170: 35–41.

    Article  CAS  Google Scholar 

  37. Workman, M., P. Holt, and J. Thykaer (2013) Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations. AMB Express. 3: 58.

    Article  Google Scholar 

  38. Duarte, N. C., M. J. Herrgard, and B. O. Palsson (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14: 1298–1309.

    Article  CAS  Google Scholar 

  39. Wasylenko, T. M., W. S. Ahn, and G. Stephanopoulos (2015) The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab. Eng. 30: 27–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dong-Yup Lee for providing iYLI647, Prof. Jens Nielsen for providing iYali4, Prof. Klaus Natter for providing iMK735 and Prof. David James Sherman for providing iNL895. We also thank Prof. Joerg M. Buescher for providing the modelBorgifier toolbox and Prof. Sameereh Hashemi-Najafabadi for the BiKEGG toolbox. This study was financially supported by National Natural Science Foundation of China (21776081), National Key R&D Program of China (2017YFE0115600), and the 111 Project (B18022).

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Hua.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Holic, R. & Hua, Q. Comparison and Analysis of Published Genome-scale Metabolic Models of Yarrowia lipolytica. Biotechnol Bioproc E 25, 53–61 (2020). https://doi.org/10.1007/s12257-019-0208-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0208-1

Keywords

Navigation