Skip to main content
Log in

Topology Optimization of Truss-Like Structure with Stress Constraints Under Multiple-Load Cases

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

A new method for topology optimization of truss-like structures with stress constraints under multiple-load cases (MLCs) is presented. A spatial truss-like material model with three families of orthotropic members is adopted, in which the three families of members along three orthotropic directions are embedded continuously in a weak matrix. The densities and directions of the three families of members at the nodes are taken as the design variables. An optimality criterion is suggested based on the concept of directional stiffness. First, under each single-load case (SLC), the truss-like structure is optimized as per the fully stressed criterion. Accordingly, the directional stiffness of the optimal structure under an SLC at every node is obtained. Next, the directional stiffness of the truss-like structure under MLCs is determined by ensuring that the directional stiffness is as similar as possible to the maximum directional stiffness of the optimal structure under every SLC along all directions. Finally, the directions and densities of the members in the optimal truss-like structures under MLCs are obtained by solving the eigenvalue problems of the coefficient matrix of the directional stiffness at every node. Two examples are presented to demonstrate the effectiveness and efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prager W, Rozvany GIN. Optimal layout of grillages. J Struct Mech. 1977;5(1):1–18.

    Article  Google Scholar 

  2. Cheng KT, Olhoff N. An investigation concerning optimal design of solid elastic plate. Int J Solids Struct. 1981;17(3):305–23.

    Article  MathSciNet  Google Scholar 

  3. Bendsøe MP, Kikuchi E. Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng. 1988;71(2):197–224.

    Article  MathSciNet  Google Scholar 

  4. Zhou M, Rozvany GIN. The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng. 1991;89:309–36.

    Article  Google Scholar 

  5. Bendsøe MP. Optimal shape design as a material distribution problem. Struct Multidiscipl Optim. 1989;1(4):193–202.

    Article  Google Scholar 

  6. Rozvany GIN, Zhou M, Birker T. Generalized shape optimization without homogenization. Struct Multidiscipl Optim. 1992;4(3–4):250–2.

    Article  Google Scholar 

  7. Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Comput Struct. 1993;49:885–96.

    Article  Google Scholar 

  8. Wang MY, Wang XM, Guo DM. A level set method for structural topology optimization. Comput Methods Appl Mech Eng. 2003;192:227–46.

    Article  MathSciNet  Google Scholar 

  9. Eschenauer HA, Olhoff N. Topology optimization of continuum structures: a review. Appl Mech Rev. 2001;54(4):1453–7.

    Article  Google Scholar 

  10. Bendsøe MP, Lund E, Olhoff N, Sigmund O. Topology optimization broadening the areas of application. Control Cybern. 2005;34(34):7–35.

    MathSciNet  MATH  Google Scholar 

  11. Baratta A, Corbi I. Topology optimization for reinforcement of no-tension structures. Acta Mech. 2014;225(3):663–78.

    Article  MathSciNet  Google Scholar 

  12. Sigmund O, Maute K. Topology optimization approaches: a comparative review. Struct Multidiscipl Optim. 2013;48(6):1031–55.

    Article  Google Scholar 

  13. Deaton JD, Grandhi RV. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscipl Optim. 2014;49(1):1–38.

    Article  MathSciNet  Google Scholar 

  14. Guo X, Zhang W, Zhong W. Doing topology optimization explicitly and geometrically: a new moving morphable components based framework. J Appl Mech. 2014;81(8):081009.

    Article  Google Scholar 

  15. Zhang W, Yang W, Zhou J, Li D, Guo X. Structural topology optimization through explicit boundary evolution. J Appl Mech. 2016;84(1):011011.

    Article  Google Scholar 

  16. Michell AGM. The limits of economy of materials in frame structures. Phil Mag. 1904;8(47):589–97.

    Article  Google Scholar 

  17. Zhou KM, Li JF. Forming Michell truss in three-dimensions by finite element method. Appl Math Mech. 2005;26:381–8.

    Article  Google Scholar 

  18. Duysinx P, Bendsøe MP. Topology optimization of continuum structures with local stress constraints. Int J Numer Meth Eng. 1998;43(8):1453–78.

    Article  MathSciNet  Google Scholar 

  19. Pereira JT, Fancello EA, Barcellos CS. Topology optimization of continuum structures with material failure constraints. Struct Multidiscipl Optim. 2004;26:50–66.

    Article  MathSciNet  Google Scholar 

  20. Bruggi M. On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscipl Optim. 2008;36:125–41.

    Article  MathSciNet  Google Scholar 

  21. Bruggi M, Venini P. A mixed FEM approach to stress-constrained topology optimization. Int J Numer Meth Eng. 2008;73:1693–714.

    Article  MathSciNet  Google Scholar 

  22. París J, Navarrina F, Colominas I, Casteleiro M. Topology optimization of continuum structures with local and global stress constraints. Struct Multidiscipl Optim. 2009;39:419–37.

    Article  MathSciNet  Google Scholar 

  23. Le C, Norato J, Bruns T, Ha C, Tortorelli D. Stress-based topology optimization for continua. Struct Multidiscipl Optim. 2010;41:605–20.

    Article  Google Scholar 

  24. Holmberg E, Torstenfelt B, Klarbring A. Stress constrained topology optimization. Struct Multidiscipl Optim. 2013;48:33–47.

    Article  MathSciNet  Google Scholar 

  25. Kiyono CY, Vatanabe SL, Silva ECN, Reddy JN. A new multi-p-norm, formulation approach for stress-based topology optimization design. Compos Struct. 2016;156:10–9.

    Article  Google Scholar 

  26. Allaire G, Jouve F. Minimum stress optimal design with the level set method. Eng Anal Boundary Elem. 2008;32(11):909–18.

    Article  Google Scholar 

  27. Guo X, Zhang WS, Wang MY, Wei P. Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng. 2011;200(47):3439–52.

    Article  MathSciNet  Google Scholar 

  28. Zhang WS, Guo X, Wang MY, Wei P. Optimal topology design of continuum structures with stress concentration alleviation via level set method. Int J Numer Meth Eng. 2013;93(9):942–59.

    Article  MathSciNet  Google Scholar 

  29. Guo X, Zhang W, Zhong W. Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng. 2014;268(1):632–55.

    Article  MathSciNet  Google Scholar 

  30. Wang MY, Li L. Shape equilibrium constraint: a strategy for stress-constrained structural topology optimization. Struct Multidiscipl Optim. 2013;47(3):335–52.

    Article  MathSciNet  Google Scholar 

  31. Xia Q, Shi T, Liu S, Wang MY. A level set solution to the stress-based structural shape and topology optimization. Comput Struct. 2012;90–91(1):55–64.

    Article  Google Scholar 

  32. Picelli R, Townsend S, Brampton C, Norato J, Kim HA. Stress-based shape and topology optimization with the level set method. Comput Methods Appl Mech Eng. 2017;329:1–23.

    Article  MathSciNet  Google Scholar 

  33. Gong SG, Du JX, Liu X, Xie GL, Zhang JP. Study on topology optimization under multiple loading conditions and stress constraints based on EFG method. Int J Comput Methods Eng Sci Mech. 2010;11(6):328–36.

    Article  MathSciNet  Google Scholar 

  34. Santos RB, Lopes CG, Novotny AA. Structural weight minimization under stress constraints and multiple loading. Mech Res Commun. 2017;81:44–50.

    Article  Google Scholar 

  35. Zhou KM, Li X. Topology optimization of structures under multiple load cases using fiber-reinforced composite material model. Comput Mech. 2006;38(2):163–70.

    Article  Google Scholar 

Download references

Acknowledgements

The research reported in this paper was financially supported by the Natural Science Foundation of China (No. 11572131) and the Subsidized Project for Postgraduates’ Innovative Fund in Scientific Research of Huaqiao University (No. 17011086002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Zhou, K. Topology Optimization of Truss-Like Structure with Stress Constraints Under Multiple-Load Cases. Acta Mech. Solida Sin. 33, 226–238 (2020). https://doi.org/10.1007/s10338-019-00125-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00125-3

Keywords

Navigation