Skip to main content
Log in

Mixed \(H_{\infty }\) and Passive Control for Fractional-Order Nonlinear Systems Via LMI Approach

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This the first time that the problem of global asymptotic stability analysis, and mixed \(H_{\infty }\) and passive control for a class of control fractional-order nonlinear systems has been studied in this paper. By using the Lyapunov direct method and some properties of fractional calculate, we propose sufficient conditions to ensure the unforced system to be asymptotically stable with mixed \(H_{\infty }\) and passivity performance level. Further, mixed \(H_{\infty }\) and passive control design with an appropriate gain matrix has been derived to achieve the stabilization for fractional-order system with nonlinear perturbations and order \(0 < \alpha < 1\). These conditions are in the form of linear matrix inequalities, which therefore can be efficiently solved by using existing convex algorithms. The effectiveness of our results is illustrated through three numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yunquan, K., Chunfang, M.: Mittag–Leffler stability of fractional-order Lorenz and Lorenz-family systems. Nonlinear Dyn. 83(3), 1237–1246 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, L., Chai, Y., Wu, R., Yan, J.: Stability and stabilization of a class of nonlinear fractional-order systems with Caputo derivative’. IEEE Trans. Circuits Syst. II 59(9), 602–606 (2012)

    Article  Google Scholar 

  3. Chen, L., He, Y., Chai, Y., Wu, R.: New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dyn. 75(4), 633–641 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhang, R., Tian, G., Yang, S., Cao, H.: Stability analysis of a class of fractional order nonlinear systems with order lying \((0, 2)\). ISA Trans. 56, 102–110 (2015)

    Article  Google Scholar 

  5. Lenka, B.K., Banerjee, S.: Asymptotic stability and stabilization of a class of nonautonomous fractional order systems. Nonlinear Dyn. 85(1), 167–177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, Z., Yang, D., Zhang, H.: Stability analysis on a class of nonlinear fractional-order systems. Nonlinear Dyn. 86(2), 1023–1033 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. López-Renteria, J.A., Fernández-Anaya, G.: Robust stability by path-connectivity of fractional order polynomials. Acta Appl. Math. 145(1), 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Thuan, M.V., Huong, D.C.: New results on stabilization of fractional-order nonlinear systems via an LMI approach. Asian J. Control 20(5), 1541–1550 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lazarević, M.P., Spasić, A.M.: Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach. Math. Comput. Model. 49(3–4), 475–481 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, M., Wang, J.R.: Finite time stability of fractional delay differential equations. Appl. Math. Lett. 64, 170–176 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, D., Xiao, A.: Dissipativity and contractivity for fractional-order systems. Nonlinear Dyn. 80(1–2), 287–294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bataineh, A.S., Alomari, A.K., Noorani, M.S.M., Hashim, I., Nazar, R.: Series solutions of systems of nonlinear fractional differential equations. Acta Appl. Math. 105(2), 189–198 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  14. Su, Y., Feng, Z.: Existence theory for an arbitrary order fractional differential equation with deviating argument. Acta Appl. Math. 118(1), 81–105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kazemy, A.: Robust mixed \(H_{\infty }/\)passive vibration control of offshore steel jacket platforms with structured uncertainty. Ocean Eng. 139, 95–102 (2017)

    Article  Google Scholar 

  16. Sakthivel, R., Joby, M., Mathiyalagan, K., Santra, S.: Mixed \(H_{\infty }\) and passive control for singular Markovian jump systems with time delay. J. Franklin Inst. 352(10), 4446–4466 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, J., Lin, C., Chen, B., Wang, Q.G.: Mixed \(H_{\infty }\) and passive control for singular systems with time delay via static output feedback. Appl. Math. Comput. 293, 244–253 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Zheng, Q., Ling, Y., Wei, L., Zhang, H.: Mixed \(H_{\infty }\) and passive control for linear switched systems via hybrid control approach. Int. J. Syst. Sci. 49(4), 818–832 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zheng, Q., Zhang, H., Ling, Y., Guo, X.: Mixed \(H_{\infty }\) and passive control for a class of nonlinear switched systems with average dwell time via hybrid control approach. J. Franklin Inst. 355(3), 1156–1175 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhu, B., Suo, M., Chen, Y., Zhang, Z., Li, S.: Mixed \(H_{\infty }\) and passivity control for a class of stochastic nonlinear sampled-data systems. J. Franklin Inst. 355(7), 3310–3329 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, G., Ma, Q., Lu, J., Li, Y., Xu, S.: Mixed \(H_{\infty }\) and passive filtering for a class of singular systems with interval time-varying delays. Optim. Control Appl. Methods 39(1), 377–392 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, Z.G., Park, J.H., Su, H., Song, B., Chu, J.: Mixed \(H_{\infty }\) and passive filtering for singular systems with time delays. Signal Process. 93, 1705–1711 (2013)

    Article  Google Scholar 

  23. Wang, J., Su, L., Shen, H., Wu, Z.G., Park, J.H.: Mixed \(H_{\infty }/\)passive sampled-data synchronization control of complex dynamical networks with distributed coupling delay. J. Franklin Inst. 354(3), 1302–1320 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Application of Fractional Differential Equations. Elsevier, New York (2006)

    MATH  Google Scholar 

  25. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Eriksson, K., Estep, D., Johnson, C.: Applied Mathematics Body and Soul: Vol. I-III. Springer, Berlin (2003)

    Google Scholar 

  28. Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffer stability. Comput. Math. Appl. 59(5), 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, S., Yu, Y., Yu, J.: LMI conditions for global stability of fractional-order neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2423–2433 (2017)

    Article  MathSciNet  Google Scholar 

  30. Yang, Y., He, Y., Wang, Y., Wu, M.: Stability analysis of fractional-order neural networks: an LMI approach. Neurocomputing 285, 82–93 (2018)

    Article  Google Scholar 

  31. Thuan, M.V., Huong, D.C., Hong, D.T.: New results on robust finite-time passivity for fractional-order neural networks with uncertainties. Neural Process. Lett. 50(2), 1065–1078 (2019)

    Article  Google Scholar 

  32. Thuan, M.V., Binh, T.N., Huong, D.C.: Finite-time guaranteed cost control of Caputo fractional-order neural networks. Asian J. Control 22(2), 696–705 (2020)

    Article  MathSciNet  Google Scholar 

  33. Wang, F., Liu, X., Tang, M., Chen, L.: Further results on stability and synchronization of fractional-order Hopfield neural networks. Neurocomputing 346, 12–19 (2019)

    Article  Google Scholar 

  34. Thuan, M.V., Huong, D.C.: Robust guaranteed cost control for time-delay fractional-order neural networks systems. Optim. Control Appl. Methods 40(4), 613–625 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: LMI Control Toolbox for Use with MATLAB. The MathWorks, Natick (1995)

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Associate Editor and anonymous reviewers for their constructive comments that helped improve the quality and presentation of this paper. The research of Mai Viet Thuan is funded by the Ministry of Education and Training of Vietnam under grant leading by Dr. Mai Viet Thuan, Thai Nguyen University of Sciences, Decision number 106/Q-BGDT 13/01/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Viet Thuan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huong, D.C., Thuan, M.V. Mixed \(H_{\infty }\) and Passive Control for Fractional-Order Nonlinear Systems Via LMI Approach. Acta Appl Math 170, 37–52 (2020). https://doi.org/10.1007/s10440-020-00323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-020-00323-z

Keywords

Navigation