Skip to main content
Log in

New Type of Gegenbauer-Jacobi-Hermite Monogenic Polynomials and Associated Continuous Clifford Wavelet Transform

Some Monogenic Clifford Polynomials and Associated Wavelets

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Recently 3D image processing has interested researchers in both theoretical and applied fields and thus has constituted a challenging subject. Theoretically, this needs suitable functional bases that are easy to implement by the next. It holds that Clifford wavelets are main tools to achieve this necessity. In the present paper we intend to develop some new classes of Clifford wavelet functions. Some classes of new monogenic polynomials are developed firstly from monogenic extensions of 2-parameters Clifford weights. Such classes englobe the well known Jacobi, Gegenbauer and Hermite ones. The constructed polynomials are next applied to develop new Clifford wavelets. Reconstruction and Fourier-Plancherel formulae have been proved. Finally, computational examples are developed provided with graphical illustrations of the Clifford mother wavelets in some cases. Some graphical illustrations of the constructed wavelets have been provided and finally concrete applications in biofields have been developed dealing with EEG/ECG and Brain image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington (1964)

    MATH  Google Scholar 

  2. Abreu-Blaya, R., Bory-Reyes, J., Bosch, P.: Extension theorem for complex Clifford algebras-valued functions on fractal domains. Bound. Value Probl. 2010, 513186, 9 pages (2010)

    Article  MathSciNet  Google Scholar 

  3. Antoine, J.-P., Murenzi, R., Vandergheynst, P.: Two-dimensional directional wavelets in image processing. Int. J. Imaging Syst. Technol. 7(3), 152–165 (1996)

    Article  Google Scholar 

  4. Arfaoui, S.: New monogenic Gegenbauer Jacobi polynomials and associated spheroidal wavelets. Doctoral Thesis in Mathematics, University of Monastir, Tunisia, Faculty of Sciences, July 26, 2017

  5. Arfaoui, S., Ben Mabrouk, A.: Some ultraspheroidal monogenic Clifford Gegenbauer Jacobi polynomials and associated wavelets. Adv. Appl. Clifford Algebras 27(3), 2287–2306 (2017)

    Article  MathSciNet  Google Scholar 

  6. Arfaoui, S., Ben Mabrouk, A.: Some old orthogonal polynomials revisited and associated wavelets: two-parameters Clifford-Jacobi polynomials and associated spheroidal wavelets. Acta Appl. Math. (2017). https://doi.org/10.1007/s10440-017-0150-1

    Article  MATH  Google Scholar 

  7. Arfaoui, S., Ben Mabrouk, A.: Some generalized Clifford-Jacobi polynomials and associated spheroidal wavelets. arxiv:1704.03513, April 06, 2017, 24 pages.

  8. Arfaoui, S., Rezgui, I., Ben Mabrouk, A.: Harmonic Wavelet Analysis on the Sphere, Spheroidal Wavelets. de Gruyter, Berlin (2016). ISBN 978-11-048188-4

    MATH  Google Scholar 

  9. Brackx, F., Sommen, F.: Clifford-Hermite wavelets in Euclidean space. J. Fourier Anal. Appl. 6(3), 299–310 (2000)

    Article  MathSciNet  Google Scholar 

  10. Brackx, F., Sommen, F.: The generalized Clifford-Hermite continuous wavelet transform. Adv. Appl. Clifford Algebras 11(51), 219–231 (2001) (Special Issue: Clifford Analysis, Proceedings of the Clifford Analysis Conference, Cetraro (Italy), October 1998)

    Article  MathSciNet  Google Scholar 

  11. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Publication, London (1982)

    MATH  Google Scholar 

  12. Brackx, F., De Schepper, N., Sommen, F.: The Clifford-Laguerre continuous wavelet transform, Bull. Belg. Math. Soc. 10, 201–215 (2003)

    MATH  Google Scholar 

  13. Brackx, F., De Schepper, N., Sommen, F.: The Clifford-Gegenbauer polynomials and the associated continuous wavelet transform. Integral Transforms Spec. Funct. 15(5), 387–404 (2004)

    Article  MathSciNet  Google Scholar 

  14. Brackx, F., De Schepper, N., Sommen, F.: The two-dimensional Clifford-Fourier transform. J. Math. Imaging Vis. 26, 5–18 (2006)

    Article  MathSciNet  Google Scholar 

  15. Brackx, F., De Schepper, N., Sommen, F.: Clifford-Jacobi polynomials and the associated continuous wavelet transform in Euclidean space. In: Wavelet Analysis and Applications, pp. 185–198 (2006)

    Chapter  Google Scholar 

  16. Brackx, F., De Schepper, N., Sommen, F.: Clifford-Hermite and two-dimensional Clifford-Gabor filters for early vision. In: Gürlebeck, K., Könke, C. (eds.) (digital) Proceedings 17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, July 12–14, 2006. Bauhaus-Universität Weimar (2006).

    Google Scholar 

  17. Brackx, F., De Schepper, N., Sommen, F.: The Fourier transform in Clifford analysis. Adv. Imaging Electron Phys. 156, 55–201 (2009)

    Article  Google Scholar 

  18. Bujack, R., De Bie, H., De Schepper, N., Scheuermann, G.: Convolution products for hypercomplex Fourier transforms. J. Math. Imaging Vis. (2013). https://doi.org/10.1007/s10851-013-0430-y, 19 pages

    Article  MATH  Google Scholar 

  19. Carré, P., Berthier, M.: Color representation and processes with Clifford algebra. In: Fernandez-Maloigne, C. (ed.) Advanced Color Image Processing and Analysis, pp. 147–179. Springer, New York, Chap. 6 (2013)

    Chapter  Google Scholar 

  20. Cattani, C.: Signorini cylindrical waves and Shannon wavelets. Adv. Numer. Anal. 2012, 731591 (2012), 24 pages

    MathSciNet  MATH  Google Scholar 

  21. Cattani, C., Kudreyko, A.: Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind. Appl. Math. Comput. 215(12), 4164–4171 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Colombo, F., Sa Badini, I., Sommen, F., Struppa, D.C.: Analysis of Dirac Systems and Computational Algebra. Progress in Mathematical Physics, vol. 39. Birkhäuser, Boston (2004)

    Book  Google Scholar 

  23. De Bie, H.: Clifford algebras, Fourier transforms and quantum mechanics. arXiv:1209.6434v1, September 2012, 39 pages

  24. De Bie, H., Xu, Y.: On the Clifford-Fourier transform. arXiv:1003.0689, December 2010, 30 pages

  25. De Schepper, N.: The generalized Clifford-Gegenbauer polynomials revisited. Adv. Appl. Clifford Algebras 19, 253–268 (2009)

    Article  MathSciNet  Google Scholar 

  26. Delanghe, R.: Clifford analysis: history and perspective. Comput. Methods Funct. Theory 1(1), 107–153 (2001)

    Article  MathSciNet  Google Scholar 

  27. Heydari, M.H., Hooshmandasl, M.R., Cattani, C., Li, M.: Legendre wavelets method for solving fractional population growth model in a closed system. Math. Probl. Eng. 2013, 161030 (2013), 8 pages

    Article  MathSciNet  Google Scholar 

  28. Heydari, M.H., Hooshmandasl, M.R., Shakiba, A., Cattani, C.: Legendre wavelets Galerkin method for solving nonlinear stochastic integral equations. Nonlinear Dyn. 85, 1185–1202 (2016)

    Article  MathSciNet  Google Scholar 

  29. Hitzer, E.: New developments in Clifford Fourier transforms. In: Mastorakis, N.E., Pardalos, P.M., Agarwal, R.P., Kocinac, L. (eds.) Proceedings of the 2014 International Conference on Pure Mathematics, Applied Mathematics, Computational Methods (PMAMCM 2014), Santorini Island, Greece, July 17–21, 2014. Mathematics and Computers in Science and Engineering Series, vol. 29, pp. 19–25 (2014)

    Google Scholar 

  30. Kindratenko, V.V.: On using functions to describe the shape. J. Math. Imaging Vis. 18, 225–245 (2003)

    Article  MathSciNet  Google Scholar 

  31. Lahar, S.: Clifford algebra: a visual introduction. A topnotch WordPress.com site, March 18, 2014

  32. Levin, E., Lubinsky, D.: Orthogonal polynomials for exponential weights \(x^{2\rho }e^{-2\mathcal{Q}(x)}\) on \([0,d)]\). J. Approx. Theory 134, 199–256 (2005)

    Article  MathSciNet  Google Scholar 

  33. Li, L.-W., Kang, X.-K., Leong, M.-S.: Spheroidal Wave Functions in Electromagnetic Theory. Wiley, New York (2002)

    Google Scholar 

  34. Michel, V.: Lectures on Constructive Approximation. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  35. Morais, J., Kou, K.I., Sprößig, W.: Generalized holomorphic Szegö kernel in 3D spheroids. Comput. Math. Appl. 65(4), 576–588 (2013)

    Article  MathSciNet  Google Scholar 

  36. Moussa, M.-M.: Calcul efficace et direct des représentations de maillages 3D utilisant les harmoniques sphériques. Thèse de Doctorat de l’université Claude Bernard, Lyon 1, France (2007)

  37. Osipov, A., Rokhlin, V., Xiao, H.: Prolate spheroidal wave functions of order zero. Mathematical tools for bandlimited approximation. In: Applied Mathematical Sciences, vol. 187. Springer, Berlin (2013)

    Google Scholar 

  38. Pena, D.P.: Cauchy-Kowalevski extensions, Fueter’s theorems and boundary values of special systems in Clifford analysis. A PhD thesis, in Mathematics, Ghent University (2008)

  39. Rizo-Rodríguez, D., Mendez-Vazquez, H., Garcia-Reyes, E.: Illumination invariant face recognition using quaternion-based correlation filters. J. Math. Imaging Vis. 45, 164–175 (2013)

    Article  MathSciNet  Google Scholar 

  40. Saillard, J., Bunel, G.: Apport des fonctions sphéroidales pour l’estimation des paramètres d’une cible radar. 12ème Colloque Gretsi-Juan-Les-Pins, 12-19 Juin 1989, 4 pages

  41. Sau, K., Basaka, R.K., Chanda, A.: Image compression based on block truncation coding using Clifford algebra. In: International Conference on Computational Intelligence: Modeling Techniques and Applications (CIMTA) 2013. Procedia Technology, vol. 10, pp. 699–706 (2013)

    Google Scholar 

  42. Shi, Y.G.: Orthogonal polynomials for Jacobi-exponential weights. Acta Math. Hung. 140(4), 363–376 (2013)

    Article  MathSciNet  Google Scholar 

  43. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  44. Stratton, J.A.: Spheroidal functions. Physics 21, 51–56 (1935)

    MATH  Google Scholar 

  45. Stratton, J.A., Morse, P.M., Chu, L.J., Little, J.D.C., Corbato, F.J.: Spheroidal Wave Functions. Wiley, New York (1956)

    Book  Google Scholar 

  46. Van De Ville, D., Sage, D., Balac, K., Unser, M.: The Marr wavelet pyramid and multiscale directional image analysis. In: 16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25–29 (2008), 5 pages

    Google Scholar 

  47. Yang, B., Suk, T., Dai, M., Flusser, J.: \(2D\) and \(3D\) image analysis by Gaussian-Hermite moments. In: Papakostas, G.A. (ed.) Moments and Moment Invariants - Theory and Applications. GCSR, vol. 1, pp. 143–173. Science Gate Publishing, Chap. 7 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrine Arfaoui.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfaoui, S., Ben Mabrouk, A. & Cattani, C. New Type of Gegenbauer-Jacobi-Hermite Monogenic Polynomials and Associated Continuous Clifford Wavelet Transform. Acta Appl Math 170, 1–35 (2020). https://doi.org/10.1007/s10440-020-00322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-020-00322-0

Keywords

Mathematics Subject Classification

Navigation