Skip to main content

Advertisement

Log in

Noncoding RNAs in Duchenne and Becker muscular dystrophies: role in pathogenesis and future prognostic and therapeutic perspectives

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Noncoding RNAs (ncRNAs), such as miRNAs and long noncoding RNAs, are key regulators of gene expression at the post-transcriptional level and represent promising therapeutic targets and biomarkers for several human diseases, including Duchenne and Becker muscular dystrophies (DMD/BMD). A role for ncRNAs in the pathogenesis of muscular dystrophies has been suggested, even if it is still incompletely understood. Here, we discuss current progress leading towards the clinical utility of ncRNAs for DMD/BMD. Long and short noncoding RNAs are differentially expressed in DMD/BMD and have a mechanism of action via targeting mRNAs. A subset of muscle-enriched miRNAs, the so-called myomiRs (miR-1, miR-133, and miR-206), are increased in the serum of patients with DMD and in dystrophin-defective animal models. Interestingly, myomiRs might be used as biomarkers, given that their levels can be corrected after dystrophin restoration in dystrophic mice. Remarkably, further evidence demonstrates that ncRNAs also play a role in dystrophin expression; thus, their modulations might represent a potential therapeutic strategy with the aim of upregulating the dystrophin protein in combination with other oligonucleotides/gene therapy approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Emery AE (1991) Population frequencies of inherited neuromuscular diseases—a world survey. Neuromuscul Disord NMD 1:19–29

    Article  CAS  Google Scholar 

  2. Mah JK, Korngut L, Dykeman J et al (2014) A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord NMD 24:482–491. https://doi.org/10.1016/j.nmd.2014.03.008

    Article  Google Scholar 

  3. Monaco AP, Bertelson CJ, Liechti-Gallati S et al (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2:90–95

    Article  CAS  Google Scholar 

  4. Gao QQ, McNally EM (2015) The dystrophin complex: structure, function, and implications for therapy. Compr Physiol 5:1223–1239. https://doi.org/10.1002/cphy.c140048

    Article  Google Scholar 

  5. Petrof BJ, Shrager JB, Stedman HH et al (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci 90:3710–3714. https://doi.org/10.1073/pnas.90.8.3710

    Article  CAS  Google Scholar 

  6. Fairclough RJ, Perkins KJ, Davies KE (2012) Pharmacologically targeting the primary defect and downstream pathology in Duchenne muscular dystrophy. Curr Gene Ther 12:206–244. https://doi.org/10.2174/156652312800840595

    Article  CAS  Google Scholar 

  7. Boldrin L, Zammit PS, Morgan JE (2015) Satellite cells from dystrophic muscle retain regenerative capacity. Stem Cell Res 14:20–29. https://doi.org/10.1016/j.scr.2014.10.007

    Article  CAS  Google Scholar 

  8. Cohn RD, Campbell KP (2000) Molecular basis of muscular dystrophies. Muscle Nerve 23:1456–1471. https://doi.org/10.1002/1097-4598(200010)23:10%3c1456:AID-MUS2%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

  9. Nichols B, Takeda S, Yokota T (2015) Nonmechanical roles of dystrophin and associated proteins in exercise, neuromuscular junctions, and brains. Brain Sci 5:275–298. https://doi.org/10.3390/brainsci5030275

    Article  CAS  Google Scholar 

  10. Constantin B (2014) Dystrophin complex functions as a scaffold for signalling proteins. Biochim Biophys Acta BBA Biomembr 1838:635–642. https://doi.org/10.1016/j.bbamem.2013.08.023

    Article  CAS  Google Scholar 

  11. Darras BT, Urion DK, Ghosh PS (1993) Dystrophinopathies. In: Adam MP, Ardinger HH, Pagon RA, et al (eds) GeneReviews®. University of Washington, Seattle, Seattle

  12. Sussman M (2002) Duchenne muscular dystrophy. J Am Acad Orthop Surg 10:138–151

    Article  Google Scholar 

  13. Brandsema JF, Darras BT (2015) Dystrophinopathies. Semin Neurol 35:369–384. https://doi.org/10.1055/s-0035-1558982

    Article  Google Scholar 

  14. Nigro G, Comi LI, Politano L, Bain RJ (1990) The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int J Cardiol 26:271–277

    Article  CAS  Google Scholar 

  15. Magri F, Govoni A, D’Angelo MG et al (2011) Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow-up. J Neurol 258:1610–1623. https://doi.org/10.1007/s00415-011-5979-z

    Article  Google Scholar 

  16. Yazaki M, Yoshida K, Nakamura A et al (1999) Clinical characteristics of aged Becker muscular dystrophy patients with onset after 30 years. Eur Neurol 42:145–149. https://doi.org/10.1159/000008089

    Article  CAS  Google Scholar 

  17. Nigro G, Comi LI, Politano L et al (1995) Evaluation of the cardiomyopathy in Becker muscular dystrophy. Muscle Nerve 18:283–291. https://doi.org/10.1002/mus.880180304

    Article  CAS  Google Scholar 

  18. Govoni A, Magri F, Brajkovic S et al (2013) Ongoing therapeutic trials and outcome measures for Duchenne muscular dystrophy. Cell Mol Life Sci CMLS 70:4585–4602. https://doi.org/10.1007/s00018-013-1396-z

    Article  CAS  Google Scholar 

  19. Mendell JR, Goemans N, Lowes LP et al (2016) Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 79:257–271. https://doi.org/10.1002/ana.24555

    Article  CAS  Google Scholar 

  20. Lim KRQ, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533–545. https://doi.org/10.2147/DDDT.S97635

    Article  CAS  Google Scholar 

  21. Heo Y-A (2020) Golodirsen: first approval. Drugs 80:329–333. https://doi.org/10.1007/s40265-020-01267-2

    Article  Google Scholar 

  22. Bushby K, Finkel R, Wong B et al (2014) Ataluren treatment of patients with nonsense mutation dystrophinopathy: ataluren for dystrophinopathy. Muscle Nerve 50:477–487. https://doi.org/10.1002/mus.24332

    Article  CAS  Google Scholar 

  23. Duan D (2018) Systemic AAV micro-dystrophin gene therapy for duchenne muscular dystrophy. Mol Ther J Am Soc Gene Ther 26:2337–2356. https://doi.org/10.1016/j.ymthe.2018.07.011

    Article  CAS  Google Scholar 

  24. Matre PR, Mu X, Wu J et al (2019) CRISPR/Cas9-based dystrophin restoration reveals a novel role for dystrophin in bioenergetics and stress resistance of muscle progenitors. Stem Cells Dayt Ohio 37:1615–1628. https://doi.org/10.1002/stem.3094

    Article  CAS  Google Scholar 

  25. Fiorillo AA, Heier CR, Novak JS et al (2015) TNF-α-induced microRNAs control dystrophin expression in becker muscular dystrophy. Cell Rep 12:1678–1690. https://doi.org/10.1016/j.celrep.2015.07.066

    Article  CAS  Google Scholar 

  26. Verhaart IEC, Aartsma-Rus A (2019) Therapeutic developments for Duchenne muscular dystrophy. Nat Rev Neurol 15:373–386. https://doi.org/10.1038/s41582-019-0203-3

    Article  Google Scholar 

  27. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15 Spec No 1:R17–R29. https://doi.org/10.1093/hmg/ddl046

  28. Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10:925–933. https://doi.org/10.4161/rna.24604

    Article  CAS  Google Scholar 

  29. Hombach S, Kretz M (2016) Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol 937:3–17. https://doi.org/10.1007/978-3-319-42059-2_1

    Article  CAS  Google Scholar 

  30. Trzybulska D, Vergadi E (2018) MiRNA and other non-coding RNAs as promising diagnostic markers. EJIFCC 29(3):221–226

    CAS  Google Scholar 

  31. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531. https://doi.org/10.1038/nrg1379

    Article  CAS  Google Scholar 

  32. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genom. https://doi.org/10.1155/2014/970607

    Article  Google Scholar 

  33. Bu D, Luo H, Jiao F et al (2015) Evolutionary annotation of conserved long non-coding RNAs in major mammalian species. Sci China Life Sci 58:787–798. https://doi.org/10.1007/s11427-015-4881-9

    Article  CAS  Google Scholar 

  34. Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14:699–712. https://doi.org/10.1038/nrm3679

    Article  CAS  Google Scholar 

  35. Zhang X, Wang W, Zhu W et al (2019) Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci. https://doi.org/10.3390/ijms20225573

    Article  Google Scholar 

  36. Bak RO, Mikkelsen JG (2014) miRNA sponges: soaking up miRNAs for regulation of gene expression. Wiley Interdiscip Rev RNA 5:317–333. https://doi.org/10.1002/wrna.1213

    Article  CAS  Google Scholar 

  37. Paraskevopoulou MD, Hatzigeorgiou AG (2016) Analyzing MiRNA–LncRNA interactions. In: Feng Y, Zhang L (eds) Long non-coding RNAs: methods and protocols. Springer, New York, pp 271–286

    Chapter  Google Scholar 

  38. Bovolenta M, Erriquez D, Valli E et al (2012) The DMD locus harbours multiple long non-coding RNAs which orchestrate and control transcription of muscle dystrophin mRNA isoforms. PLoS One 7:e45328. https://doi.org/10.1371/journal.pone.0045328

    Article  CAS  Google Scholar 

  39. Greco S, De Simone M, Colussi C et al (2009) Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB J 23:3335–3346. https://doi.org/10.1096/fj.08-128579

    Article  CAS  Google Scholar 

  40. Fiorillo AA, Tully CB, Damsker JM et al (2018) Muscle miRNAome shows suppression of chronic inflammatory miRNAs with both prednisone and vamorolone. Physiol Genom 50:735–745. https://doi.org/10.1152/physiolgenomics.00134.2017

    Article  CAS  Google Scholar 

  41. Liu DZ, Stamova B, Hu S et al (2015) MicroRNA and mRNA expression changes in steroid naïve and steroid treated DMD patients. J Neuromuscul Dis 2:387–396. https://doi.org/10.3233/JND-150076

    Article  Google Scholar 

  42. Zaharieva IT, Calissano M, Scoto M et al (2013) Dystromirs as serum biomarkers for monitoring the disease severity in duchenne muscular dystrophy. PLoS One 8:e80263. https://doi.org/10.1371/journal.pone.0080263

    Article  Google Scholar 

  43. Taganov KD, Boldin MP, Chang K-J, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486. https://doi.org/10.1073/pnas.0605298103

    Article  CAS  Google Scholar 

  44. Wei W, He H-B, Zhang W-Y et al (2013) miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis 4:e668. https://doi.org/10.1038/cddis.2013.184

    Article  CAS  Google Scholar 

  45. Wang H, Garzon R, Sun H et al (2008) NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14:369–381. https://doi.org/10.1016/j.ccr.2008.10.006

    Article  CAS  Google Scholar 

  46. Wang L, Zhou L, Jiang P et al (2012) Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. Mol Ther 20:1222–1233. https://doi.org/10.1038/mt.2012.35

    Article  CAS  Google Scholar 

  47. Chen J-F, Mandel EM, Thomson JM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233. https://doi.org/10.1038/ng1725

    Article  CAS  Google Scholar 

  48. Nguyen-Tran D-H, Hait NC, Sperber H et al (2014) Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy. Dis Model Mech 7:41–54. https://doi.org/10.1242/dmm.013631

    Article  CAS  Google Scholar 

  49. Ardite E, Perdiguero E, Vidal B et al (2012) PAI-1–regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy. J Cell Biol 196:163–175. https://doi.org/10.1083/jcb.201105013

    Article  CAS  Google Scholar 

  50. Zanotti S, Gibertini S, Curcio M et al (2015) Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy. Biochim Biophys Acta BBA Mol Basis Dis 1852:1451–1464. https://doi.org/10.1016/j.bbadis.2015.04.013

    Article  CAS  Google Scholar 

  51. Zanotti S, Gibertini S, Blasevich F et al (2018) Exosomes and exosomal miRNAs from muscle-derived fibroblasts promote skeletal muscle fibrosis. Matrix Biol 74:77–100. https://doi.org/10.1016/j.matbio.2018.07.003

    Article  CAS  Google Scholar 

  52. Giordani L, Sandoná M, Rotini A et al (2014) Muscle-specific microRNAs as biomarkers of Duchenne Muscular Dystrophy progression and response to therapies. Rare Dis 2:e974969. https://doi.org/10.4161/21675511.2014.974969

    Article  CAS  Google Scholar 

  53. Saccone V, Consalvi S, Giordani L et al (2014) HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes Dev 28:841–857. https://doi.org/10.1101/gad.234468.113

    Article  CAS  Google Scholar 

  54. Cacchiarelli D, Martone J, Girardi E et al (2010) MicroRNAs involved in molecular circuitries relevant for the duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway. Cell Metab 12:341–351. https://doi.org/10.1016/j.cmet.2010.07.008

    Article  CAS  Google Scholar 

  55. Guilbaud M, Gentil C, Peccate C et al (2018) miR-708-5p and miR-34c-5p are involved in nNOS regulation in dystrophic context. Skelet Muscle. https://doi.org/10.1186/s13395-018-0161-2

    Article  Google Scholar 

  56. Cordani N, Pisa V, Pozzi L et al (2014) Nitric oxide controls fat deposition in dystrophic skeletal muscle by regulating fibro-adipogenic precursor differentiation. Stem Cells Dayt Ohio 32:874–885. https://doi.org/10.1002/stem.1587

    Article  CAS  Google Scholar 

  57. De Arcangelis V, Serra F, Cogoni C et al (2010) β1-syntrophin modulation by miR-222 in mdx mice. PLoS One. https://doi.org/10.1371/journal.pone.0012098

    Article  Google Scholar 

  58. Robriquet F, Babarit C, Larcher T et al (2016) Identification in GRMD dog muscle of critical miRNAs involved in pathophysiology and effects associated with MuStem cell transplantation. BMC Musculoskelet Disord. https://doi.org/10.1186/s12891-016-1060-5

    Article  Google Scholar 

  59. Morgan JE, Partridge TA (2003) Muscle satellite cells. Int J Biochem Cell Biol 35:1151–1156. https://doi.org/10.1016/s1357-2725(03)00042-6

    Article  CAS  Google Scholar 

  60. von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci USA 110:16474–16479. https://doi.org/10.1073/pnas.1307680110

    Article  Google Scholar 

  61. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a008342

    Article  Google Scholar 

  62. Buckingham M, Rigby PWJ (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28:225–238. https://doi.org/10.1016/j.devcel.2013.12.020

    Article  CAS  Google Scholar 

  63. Zammit PS (2017) Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 72:19–32. https://doi.org/10.1016/j.semcdb.2017.11.011

    Article  CAS  Google Scholar 

  64. Asfour HA, Allouh MZ, Said RS (2018) Myogenic regulatory factors: the orchestrators of myogenesis after 30 years of discovery. Exp Biol Med Maywood NJ 243:118–128. https://doi.org/10.1177/1535370217749494

    Article  CAS  Google Scholar 

  65. Ballarino M, Morlando M, Fatica A, Bozzoni I (2016) Non-coding RNAs in muscle differentiation and musculoskeletal disease. J Clin Invest 126:2021–2030. https://doi.org/10.1172/JCI84419

    Article  Google Scholar 

  66. Nie M, Deng Z-L, Liu J, Wang D-Z (2015) Noncoding RNAs, emerging regulators of skeletal muscle development and diseases. Biomed Res Int 2015:676575. https://doi.org/10.1155/2015/676575

    Article  CAS  Google Scholar 

  67. Hagan M, Zhou M, Ashraf M, et al (2017) Long noncoding RNAs and their roles in skeletal muscle fate determination. Non-Coding RNA Investig. https://doi.org/10.21037/ncri.2017.12.01

  68. Cacchiarelli D, Incitti T, Martone J et al (2011) miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Rep 12:136–141. https://doi.org/10.1038/embor.2010.208

    Article  CAS  Google Scholar 

  69. Hindi SM, Kumar A (2016) TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis. J Clin Invest 126:151–168. https://doi.org/10.1172/JCI81655

    Article  Google Scholar 

  70. Ling Y-H, Sui M-H, Zheng Q et al (2018) miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-22262-4

    Article  CAS  Google Scholar 

  71. Kuang W, Tan J, Duan Y et al (2009) Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb. Biochem Biophys Res Commun 378:259–263. https://doi.org/10.1016/j.bbrc.2008.11.041

    Article  CAS  Google Scholar 

  72. Khanna N, Ge Y, Chen J (2014) MicroRNA-146b promotes myogenic differentiation and modulates multiple gene targets in muscle cells. PLoS One 9:e100657. https://doi.org/10.1371/journal.pone.0100657

    Article  CAS  Google Scholar 

  73. Kim HK, Lee YS, Sivaprasad U et al (2006) Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174:677–687. https://doi.org/10.1083/jcb.200603008

    Article  CAS  Google Scholar 

  74. Wang XH, Hu Z, Klein JD et al (2011) Decreased miR-29 suppresses myogenesis in CKD. J Am Soc Nephrol JASN 22:2068–2076. https://doi.org/10.1681/ASN.2010121278

    Article  CAS  Google Scholar 

  75. Naguibneva I, Ameyar-Zazoua M, Polesskaya A et al (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8:278–284. https://doi.org/10.1038/ncb1373

    Article  CAS  Google Scholar 

  76. Wang L, Chen X, Zheng Y et al (2012) MiR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms. Exp Cell Res 318:2324–2334. https://doi.org/10.1016/j.yexcr.2012.06.018

    Article  CAS  Google Scholar 

  77. Antoniou A, Mastroyiannopoulos NP, Uney JB, Phylactou LA (2014) miR-186 inhibits muscle cell differentiation through myogenin regulation. J Biol Chem 289:3923–3935. https://doi.org/10.1074/jbc.M113.507343

    Article  CAS  Google Scholar 

  78. Sun Q, Zhang Y, Yang G et al (2008) Transforming growth factor-β-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 36:2690–2699. https://doi.org/10.1093/nar/gkn032

    Article  CAS  Google Scholar 

  79. Cardinali B, Castellani L, Fasanaro P et al (2009) Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One 4:e7607. https://doi.org/10.1371/journal.pone.0007607

    Article  CAS  Google Scholar 

  80. Eisenberg I, Eran A, Nishino I et al (2007) Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci 104:17016–17021. https://doi.org/10.1073/pnas.0708115104

    Article  Google Scholar 

  81. Crist CG, Montarras D, Buckingham M (2012) Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 11:118–126. https://doi.org/10.1016/j.stem.2012.03.011

    Article  CAS  Google Scholar 

  82. Jia L, Li Y-F, Wu G-F et al (2013) MiRNA-199a-3p regulates C2C12 myoblast differentiation through IGF-1/AKT/mTOR signal pathway. Int J Mol Sci 15:296–308. https://doi.org/10.3390/ijms15010296

    Article  CAS  Google Scholar 

  83. Mousavi K, Zare H, Dell’orso S et al (2013) eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 51:606–617. https://doi.org/10.1016/j.molcel.2013.07.022

    Article  CAS  Google Scholar 

  84. Hubé F, Velasco G, Rollin J et al (2011) Steroid receptor RNA activator protein binds to and counteracts SRA RNA-mediated activation of MyoD and muscle differentiation. Nucleic Acids Res 39:513–525. https://doi.org/10.1093/nar/gkq833

    Article  CAS  Google Scholar 

  85. Borensztein M, Monnier P, Court F et al (2013) Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse. Dev Camb Engl 140:1231–1239. https://doi.org/10.1242/dev.084665

    Article  CAS  Google Scholar 

  86. Dey BK, Pfeifer K, Dutta A (2014) The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 28:491–501. https://doi.org/10.1101/gad.234419.113

    Article  Google Scholar 

  87. Zhang K, Sha J, Harter ML (2010) Activation of Cdc6 by MyoD is associated with the expansion of quiescent myogenic satellite cells. J Cell Biol 188:39–48. https://doi.org/10.1083/jcb.200904144

    Article  CAS  Google Scholar 

  88. Guo Y, Wang J, Zhu M et al (2017) Identification of MyoD-responsive transcripts reveals a novel long non-coding RNA (lncRNA-AK143003) that negatively regulates myoblast differentiation. Sci Rep 7:2828. https://doi.org/10.1038/s41598-017-03071-7

    Article  CAS  Google Scholar 

  89. Wang L, Zhao Y, Bao X et al (2015) LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res 25:335–350. https://doi.org/10.1038/cr.2015.21

    Article  CAS  Google Scholar 

  90. Lu L, Sun K, Chen X et al (2013) Genome-wide survey by ChIP-seq reveals YY1 regulation of lincRNAs in skeletal myogenesis. EMBO J 32:2575–2588. https://doi.org/10.1038/emboj.2013.182

    Article  CAS  Google Scholar 

  91. Chen X, He L, Zhao Y et al (2017) Malat1 regulates myogenic differentiation and muscle regeneration through modulating MyoD transcriptional activity. Cell Discov 3:17002. https://doi.org/10.1038/celldisc.2017.2

    Article  CAS  Google Scholar 

  92. Zhou L, Sun K, Zhao Y et al (2015) Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1. Nat Commun 6:10026. https://doi.org/10.1038/ncomms10026

    Article  CAS  Google Scholar 

  93. Yu X, Zhang Y, Li T et al (2017) Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD. Nat Commun 8:14016. https://doi.org/10.1038/ncomms14016

    Article  CAS  Google Scholar 

  94. Mueller AC, Cichewicz MA, Dey BK et al (2015) MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Mol Cell Biol 35:498–513. https://doi.org/10.1128/MCB.01079-14

    Article  CAS  Google Scholar 

  95. Wang G, Wang Y, Xiong Y et al (2016) Sirt1 AS lncRNA interacts with its mRNA to inhibit muscle formation by attenuating function of miR-34a. Sci Rep 6:21865. https://doi.org/10.1038/srep21865

    Article  CAS  Google Scholar 

  96. Zhu M, Liu J, Xiao J et al (2017) Lnc-mg is a long non-coding RNA that promotes myogenesis. Nat Commun 8:14718. https://doi.org/10.1038/ncomms14718

    Article  Google Scholar 

  97. Zhang Z, Li J, Guan D et al (2018) A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration. J Cachexia Sarcopenia Muscle 9:613–626. https://doi.org/10.1002/jcsm.12281

    Article  Google Scholar 

  98. Cesana M, Cacchiarelli D, Legnini I et al (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369. https://doi.org/10.1016/j.cell.2011.09.028

    Article  CAS  Google Scholar 

  99. Ballarino M, Cazzella V, D’Andrea D et al (2015) novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation. Mol Cell Biol 35:728–736. https://doi.org/10.1128/MCB.01394-14

    Article  CAS  Google Scholar 

  100. Nakasa T, Ishikawa M, Shi M et al (2010) Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. J Cell Mol Med 14:2495–2505. https://doi.org/10.1111/j.1582-4934.2009.00898.x

    Article  CAS  Google Scholar 

  101. Butchart LC, Terrill JR, Rossetti G et al (2018) Expression patterns of regulatory RNAs, including lncRNAs and tRNAs, during postnatal growth of normal and dystrophic (mdx) mouse muscles, and their response to taurine treatment. Int J Biochem Cell Biol 99:52–63. https://doi.org/10.1016/j.biocel.2018.03.016

    Article  CAS  Google Scholar 

  102. Nghiem PP, Hoffman EP, Mittal P et al (2013) Sparing of the dystrophin-deficient cranial sartorius muscle is associated with classical and novel hypertrophy pathways in GRMD dogs. Am J Pathol 183:1411–1424. https://doi.org/10.1016/j.ajpath.2013.07.013

    Article  CAS  Google Scholar 

  103. Alexander MS, Casar J, Motohashi N et al (2011) Regulation of DMD pathology by an ankyrin-encoded miRNA. Skelet Muscle 1:27. https://doi.org/10.1186/2044-5040-1-27

    Article  CAS  Google Scholar 

  104. Alexander MS, Casar JC, Motohashi N et al (2014) MicroRNA-486-dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms. J Clin Invest 124:2651–2667. https://doi.org/10.1172/JCI73579

    Article  CAS  Google Scholar 

  105. Alexander MS, Kawahara G, Motohashi N et al (2013) MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation and myogenic differentiation. Cell Death Differ 20:1194–1208. https://doi.org/10.1038/cdd.2013.62

    Article  CAS  Google Scholar 

  106. Liu J, Liang X, Zhou D et al (2016) Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit. EMBO Mol Med 8:1212–1228. https://doi.org/10.15252/emmm.201606372

    Article  CAS  Google Scholar 

  107. Dey BK, Mueller AC, Dutta A (2014) Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription 5:e944014. https://doi.org/10.4161/21541272.2014.944014

    Article  Google Scholar 

  108. Kyrychenko S, Kyrychenko V, Badr MA et al (2015) Pivotal role of miR-448 in the development of ROS-induced cardiomyopathy. Cardiovasc Res 108:324–334. https://doi.org/10.1093/cvr/cvv238

    Article  CAS  Google Scholar 

  109. Zhou J, Gao J, Zhang X et al (2015) microRNA-340-5p functions downstream of cardiotrophin-1 to regulate cardiac eccentric hypertrophy and heart failure via target gene dystrophin. Int Heart J 56:454–458. https://doi.org/10.1536/ihj.14-386

    Article  CAS  Google Scholar 

  110. Quaranta MT, Spinello I, Paolillo R et al (2016) Identification of β-dystrobrevin as a direct target of miR-143: involvement in early stages of neural differentiation. PLoS One. https://doi.org/10.1371/journal.pone.0156325

    Article  Google Scholar 

  111. Tran THT, Zhang Z, Yagi M et al (2013) Molecular characterization of an X(p21.2;q28) chromosomal inversion in a Duchenne muscular dystrophy patient with mental retardation reveals a novel long non-coding gene on Xq28. J Hum Genet 58:33–39. https://doi.org/10.1038/jhg.2012.131

    Article  CAS  Google Scholar 

  112. Simionescu-Bankston A, Kumar A (2016) Noncoding RNAs in the regulation of skeletal muscle biology in health and disease. J Mol Med Berl Ger 94:853–866. https://doi.org/10.1007/s00109-016-1443-y

    Article  CAS  Google Scholar 

  113. Cao H, Shao F, Li M et al (2019) Comprehensive identification of micropeptides encoded by long noncoding RNAs in human tissues. FASEB J 33:714.1. https://doi.org/10.1096/fasebj.2019.33.1_supplement.714.1

    Article  Google Scholar 

  114. Anderson DM, Anderson KM, Chang C-L et al (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160:595–606. https://doi.org/10.1016/j.cell.2015.01.009

    Article  CAS  Google Scholar 

  115. Makarewich CA, Munir AZ, Schiattarella GG et al (2018) The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. eLife 7:e38319. https://doi.org/10.7554/eLife.38319

    Article  Google Scholar 

  116. Lin Y-F, Xiao M-H, Chen H-X et al (2019) A novel mitochondrial micropeptide MPM enhances mitochondrial respiratory activity and promotes myogenic differentiation. Cell Death Dis. https://doi.org/10.1038/s41419-019-1767-y

    Article  Google Scholar 

  117. Stein CS, Jadiya P, Zhang X et al (2018) Mitoregulin: a lncRNA-encoded microprotein that supports mitochondrial supercomplexes and respiratory efficiency. Cell Rep 23:3710–3720.e8. https://doi.org/10.1016/j.celrep.2018.06.002

    Article  CAS  Google Scholar 

  118. Matsumoto A, Clohessy JG, Pandolfi PP (2017) SPAR, a lncRNA encoded mTORC1 inhibitor. Cell Cycle 16:815–816. https://doi.org/10.1080/15384101.2017.1304735

    Article  CAS  Google Scholar 

  119. Chen B, You W, Wang Y, Shan T (2019) The regulatory role of Myomaker and Myomixer–Myomerger–Minion in muscle development and regeneration. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03341-9

    Article  Google Scholar 

  120. Cai B, Li Z, Ma M et al (2017) LncRNA-Six1 encodes a micropeptide to activate Six1 in Cis and is involved in cell proliferation and muscle growth. Front Physiol. https://doi.org/10.3389/fphys.2017.00230

    Article  Google Scholar 

  121. Ma M, Cai B, Jiang L et al (2018) lncRNA-Six1 is a target of miR-1611 that functions as a ceRNA to regulate Six1 protein expression and fiber type switching in chicken myogenesis. Cells. https://doi.org/10.3390/cells7120243

    Article  Google Scholar 

  122. Backes C, Meese E, Keller A (2016) Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol Diagn Ther 20:509–518. https://doi.org/10.1007/s40291-016-0221-4

    Article  CAS  Google Scholar 

  123. McCarthy JJ (2008) MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta 1779:682–691. https://doi.org/10.1016/j.bbagrm.2008.03.001

    Article  CAS  Google Scholar 

  124. Amirouche A, Jahnke VE, Lunde JA et al (2017) Muscle-specific microRNA-206 targets multiple components in dystrophic skeletal muscle representing beneficial adaptations. Am J Physiol-Cell Physiol 312:C209–C221. https://doi.org/10.1152/ajpcell.00185.2016

    Article  Google Scholar 

  125. Liu N, Williams AH, Maxeiner JM et al (2012) microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Invest 122:2054–2065. https://doi.org/10.1172/JCI62656

    Article  CAS  Google Scholar 

  126. Ma G, Wang Y, Li Y et al (2015) MiR-206, a key modulator of skeletal muscle development and disease. Int J Biol Sci 11:345–352. https://doi.org/10.7150/ijbs.10921

    Article  Google Scholar 

  127. McCarthy JJ, Esser KA, Andrade FH (2007) MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol-Cell Physiol 293:C451–C457. https://doi.org/10.1152/ajpcell.00077.2007

    Article  CAS  Google Scholar 

  128. Yuasa K, Hagiwara Y, Ando M et al (2008) MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct Funct 33:163–169. https://doi.org/10.1247/csf.08022

    Article  CAS  Google Scholar 

  129. Coenen-Stass AML, Wood MJA, Roberts TC (2017) Biomarker potential of extracellular miRNAs in duchenne muscular dystrophy. Trends Mol Med 23:989–1001. https://doi.org/10.1016/j.molmed.2017.09.002

    Article  CAS  Google Scholar 

  130. Coenen-Stass AML, Betts CA, Lee YF et al (2016) Selective release of muscle-specific, extracellular microRNAs during myogenic differentiation. Hum Mol Genet 25:3960–3974. https://doi.org/10.1093/hmg/ddw237

    Article  CAS  Google Scholar 

  131. Vignier N, Amor F, Fogel P et al (2013) Distinctive serum miRNA profile in mouse models of striated muscular pathologies. PLoS One 8:e55281. https://doi.org/10.1371/journal.pone.0055281

    Article  CAS  Google Scholar 

  132. Hu J, Kong M, Ye Y et al (2014) Serum miR-206 and other muscle-specific microRNAs as non-invasive biomarkers for Duchenne muscular dystrophy. J Neurochem 129:877–883. https://doi.org/10.1111/jnc.12662

    Article  CAS  Google Scholar 

  133. Cacchiarelli D, Legnini I, Martone J et al (2011) miRNAs as serum biomarkers for Duchenne muscular dystrophy: miRNAs as serum biomarkers for DMD. EMBO Mol Med 3:258–265. https://doi.org/10.1002/emmm.201100133

    Article  CAS  Google Scholar 

  134. Li X, Li Y, Zhao L et al (2014) Circulating muscle-specific miRNAs in Duchenne muscular dystrophy patients. Mol Ther Nucleic Acids 3:e177. https://doi.org/10.1038/mtna.2014.29

    Article  CAS  Google Scholar 

  135. Matsuzaka Y, Kishi S, Aoki Y et al (2014) Three novel serum biomarkers, miR-1, miR-133a, and miR-206 for Limb-girdle muscular dystrophy, Facioscapulohumeral muscular dystrophy, and Becker muscular dystrophy. Environ Health Prev Med 19:452–458. https://doi.org/10.1007/s12199-014-0405-7

    Article  CAS  Google Scholar 

  136. Anaya-Segura M, Rangel-Villalobos H, Martínez-Cortés G et al (2016) Serum levels of MicroRNA-206 and novel mini-STR assays for carrier detection in duchenne muscular dystrophy. Int J Mol Sci 17:1334. https://doi.org/10.3390/ijms17081334

    Article  CAS  Google Scholar 

  137. Roberts TC, Blomberg KEM, McClorey G et al (2012) Expression analysis in multiple muscle groups and serum reveals complexity in the MicroRNA transcriptome of the mdx mouse with implications for therapy. Mol Ther Nucleic Acids 1:e39. https://doi.org/10.1038/mtna.2012.26

    Article  CAS  Google Scholar 

  138. Mizuno H, Nakamura A, Aoki Y et al (2011) Identification of muscle-specific MicroRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS One 6:e18388. https://doi.org/10.1371/journal.pone.0018388

    Article  CAS  Google Scholar 

  139. Deng Z, Chen J-F, Wang D-Z (2011) Transgenic overexpression of miR-133a in skeletal muscle. BMC Musculoskelet Disord. https://doi.org/10.1186/1471-2474-12-115

    Article  Google Scholar 

  140. Zacharewicz E, Lamon S, Russell A (2013) MicroRNAs in skeletal muscle and their regulation with exercise, ageing, and disease. Front Physiol 4:266. https://doi.org/10.3389/fphys.2013.00266

    Article  Google Scholar 

  141. Gomes CPC, Oliveira GP, Madrid B et al (2014) Circulating miR-1, miR-133a, and miR-206 levels are increased after a half-marathon run. Biomark Biochem Indic Expo Response Susceptibil Chem 19:585–589. https://doi.org/10.3109/1354750X.2014.952663

    Article  CAS  Google Scholar 

  142. Llano-Diez M, Ortez CI, Gay JA et al (2017) Digital PCR quantification of miR-30c and miR-181a as serum biomarkers for Duchenne muscular dystrophy. Neuromuscul Disord 27:15–23. https://doi.org/10.1016/j.nmd.2016.11.003

    Article  Google Scholar 

  143. Jeanson-Leh L, Lameth J, Krimi S et al (2014) Serum profiling identifies novel muscle miRNA and cardiomyopathy-related miRNA biomarkers in golden retriever muscular dystrophy dogs and duchenne muscular dystrophy patients. Am J Pathol 184:2885–2898. https://doi.org/10.1016/j.ajpath.2014.07.021

    Article  CAS  Google Scholar 

  144. Roberts TC, Godfrey C, McClorey G et al (2013) Extracellular microRNAs are dynamic non-vesicular biomarkers of muscle turnover. Nucleic Acids Res 41:9500–9513. https://doi.org/10.1093/nar/gkt724

    Article  CAS  Google Scholar 

  145. Catapano F, Domingos J, Perry M et al (2018) Downregulation of miRNA-29, -23 and -21 in urine of Duchenne muscular dystrophy patients. Epigenomics. https://doi.org/10.2217/epi-2018-0022

    Article  Google Scholar 

  146. Becker S, Florian A, Patrascu A et al (2016) Identification of cardiomyopathy associated circulating miRNA biomarkers in patients with muscular dystrophy using a complementary cardiovascular magnetic resonance and plasma profiling approach. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-016-0244-3

    Article  Google Scholar 

  147. Grounds MD, Terrill JR, Al-Mshhdani BA et al (2020) Biomarkers for Duchenne muscular dystrophy: myonecrosis, inflammation and oxidative stress. Dis Model Mech. https://doi.org/10.1242/dmm.043638

    Article  Google Scholar 

  148. Cazzella V, Martone J, Pinnarò C et al (2012) Exon 45 skipping through U1-snRNA antisense molecules recovers the Dys-nNOS pathway and muscle differentiation in human DMD myoblasts. Mol Ther 20:2134–2142. https://doi.org/10.1038/mt.2012.178

    Article  CAS  Google Scholar 

  149. Roberts TC, Johansson HJ, McClorey G et al (2015) Multi-level omics analysis in a murine model of dystrophin loss and therapeutic restoration. Hum Mol Genet 24:6756–6768. https://doi.org/10.1093/hmg/ddv381

    Article  CAS  Google Scholar 

  150. Young CS, Hicks MR, Ermolova NV et al (2016) A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 18:533–540. https://doi.org/10.1016/j.stem.2016.01.021

    Article  CAS  Google Scholar 

  151. Hildyard JC, Wells DJ (2016) Investigating synthetic oligonucleotide targeting of Mir31 in Duchenne muscular dystrophy. PLoS Curr. https://doi.org/10.1371/currents.md.99d88e72634387639707601b237467d7

    Article  Google Scholar 

  152. Heller KN, Mendell JT, Mendell JR, Rodino-Klapac LR (2017) MicroRNA-29 overexpression by adeno-associated virus suppresses fibrosis and restores muscle function in combination with micro-dystrophin. JCI Insight. https://doi.org/10.1172/jci.insight.93309

    Article  Google Scholar 

  153. Bulaklak K, Xiao B, Qiao C et al (2018) MicroRNA-206 downregulation improves therapeutic gene expression and motor function in mdx mice. Mol Ther Nucleic Acids 12:283–293. https://doi.org/10.1016/j.omtn.2018.05.011

    Article  CAS  Google Scholar 

  154. Perkins KJ, Davies KE (2018) Alternative utrophin mRNAs contribute to phenotypic differences between dystrophin-deficient mice and Duchenne muscular dystrophy. FEBS Lett 592:1856–1869. https://doi.org/10.1002/1873-3468.13099

    Article  CAS  Google Scholar 

  155. Basu U, Lozynska O, Moorwood C et al (2011) Translational regulation of utrophin by miRNAs. PLoS One 6:e29376. https://doi.org/10.1371/journal.pone.0029376

    Article  CAS  Google Scholar 

  156. Mishra MK, Loro E, Sengupta K et al (2017) Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction. PLoS One 12:e0182676. https://doi.org/10.1371/journal.pone.0182676

    Article  CAS  Google Scholar 

  157. Aminzadeh MA, Rogers RG, Fournier M et al (2018) Exosome-mediated benefits of cell therapy in mouse and human models of duchenne muscular dystrophy. Stem Cell Rep 10:942–955. https://doi.org/10.1016/j.stemcr.2018.01.023

    Article  CAS  Google Scholar 

  158. Roberts TC, Coenen-Stass AML, Wood MJA (2014) Assessment of RT-qPCR normalization strategies for accurate quantification of extracellular microRNAs in murine serum. PLoS One 9:e89237. https://doi.org/10.1371/journal.pone.0089237

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the Associazione Centro Dino Ferrari for its support.

Funding

The project received partial support from Italian Ministry of Health to GPC.

Author information

Authors and Affiliations

Authors

Contributions

RB, FM and SC conceived and wrote the manuscript, NB and GPC revised the text.

Corresponding author

Correspondence to Stefania Corti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brusa, R., Magri, F., Bresolin, N. et al. Noncoding RNAs in Duchenne and Becker muscular dystrophies: role in pathogenesis and future prognostic and therapeutic perspectives. Cell. Mol. Life Sci. 77, 4299–4313 (2020). https://doi.org/10.1007/s00018-020-03537-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03537-4

Keywords

Navigation