Skip to main content
Log in

Extendable Machine Learning Model for the Stability of Single Atom Alloys

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this work, we aim to update the understanding of how impurity or promoter metals segregate on metal surfaces, particularly in the application of single-atom alloys (SAA) for catalysis. Using density functional theory, we calculated the relative stability of the idealized SAA relative to subsurface, dimer, and adatom configurations to determine the tendency of the promoter atom to diffuse into the bulk, form surface clusters, or avoid alloying with the host, respectively. We selected 26 d-block metals augmented with Al and Pb to create a 28 × 28 database that indicates a total of 250 combinations for which the SAA configuration is most stable, and an additional 358 systems for which the SAA geometry is within 0.5 eV of the most stable configuration. We classified the data using decision tree, support vector machine, and neural network machine learning algorithms with tabulated atomic properties as the input vector. These black box approaches are unable to extrapolate to other possible geometries, which was circumvented by redefining the stability problem as a regression. We propose a physical bond counting model to formulate intuitive criteria for the formation of stable SAAs. The accuracy is then improved by using the bonding configuration and tabulated atomic properties with a kernel ridge regression (KRR) algorithm. The hybrid KRR model correctly identifies 190 SAAs with 85 false positives. Importantly, its physical basis allows the hybrid model to extend to similar geometries not included in the training data, thereby expanding the domain where the model is useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci USA 108(3):937–943

    PubMed  Google Scholar 

  2. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1(1):37–46

    PubMed  Google Scholar 

  3. Grabow LC (2012) When outliers make all the difference. ChemCatChem 4(12):1887–1888

    CAS  Google Scholar 

  4. Kyriakou G, Boucher MB, Jewell AD, Lewis EA, Lawton TJ, Baber AE, Tierney HL, Flytzani-Stephanopoulos M, Sykes ECH (2012) Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335(6073):1209–1212

    CAS  PubMed  Google Scholar 

  5. Wang S, Temel B, Shen J, Jones G, Grabow LC, Studt F, Bligaard T, Abild-Pedersen F, Christensen CH, Nørskov JK (2011) Universal Brønsted–Evans–Polanyi relations for C-C, C–O, C–N, N–O, N–N, and O–O dissociation reactions. Catal Lett 141(3):370–373

    CAS  Google Scholar 

  6. van Santen RA, Neurock M, Shetty SG (2010) Reactivity theory of transition-metal surfaces: a Brønsted–Evans–Polanyi linear activation energy–free-energy analysis. Chem Rev 110(4):2005–2048

    PubMed  Google Scholar 

  7. Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2008) Brønsted–Evans–Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis. J Phys Chem C 112(5):1308–1311

    CAS  Google Scholar 

  8. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 224(1):206–217

    CAS  Google Scholar 

  9. Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3(11):810–815

    CAS  PubMed  Google Scholar 

  10. Nilekar AU, Xu Y, Zhang J, Vukmirovic MB, Sasaki K, Adzic RR, Mavrikakis M (2007) Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top Catal 46(3–4):276–284

    CAS  Google Scholar 

  11. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5(11):909–913

    CAS  PubMed  Google Scholar 

  12. Andersen M, Medford AJ, Nørskov JK, Reuter K (2017) Scaling-relation-based analysis of bifunctional catalysis: the case for homogeneous bimetallic alloys. ACS Catal 7(6):3960–3967

    CAS  Google Scholar 

  13. Groß A (2006) Reactivity of bimetallic systems studied from first principles. Top Catal 37(1):29–39

    Google Scholar 

  14. Rodriguez J (1996) Physical and chemical properties of bimetallic surfaces. Surf Sci Rep 24(7–8):223–287

    CAS  Google Scholar 

  15. Ruff M, Takehiro N, Liu P, Nørskov JK, Behm RJ (2007) Size-specific chemistry on bimetallic surfaces: a combined experimental and theoretical study. ChemPhysChem 8(14):2068–2071

    CAS  PubMed  Google Scholar 

  16. Greeley J, Mavrikakis M (2005) Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys. J Phys Chem B 109(8):3460–3471

    CAS  PubMed  Google Scholar 

  17. Calle-Vallejo F, Krabbe A, García-Lastra JM (2016) How covalence breaks adsorption-energy scaling relations and solvation restores them. Chem Sci 8(1):124–130

    PubMed  PubMed Central  Google Scholar 

  18. Singh AR, Montoya JH, Rohr BA, Tsai C, Vojvodic A, Nørskov JK (2018) Computational design of active site structures with improved transition-state scaling for ammonia synthesis. ACS Catal 8(5):4017–4024

    CAS  Google Scholar 

  19. Wang P, Chang F, Gao W, Guo J, Wu G, He T, Chen P (2017) Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat Chem 9(1):64–70

    CAS  PubMed  Google Scholar 

  20. Greeley J, Mavrikakis M (2006) Near-surface alloys for hydrogen fuel cell applications. Catal Today 111(1–2):52–58

    CAS  Google Scholar 

  21. Rameshan C, Stadlmayr W, Weilach C, Penner S, Lorenz H, Hävecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Schlögl R, Memmel N, Zemlyanov D, Rupprechter G, Klötzer B (2010) Subsurface-controlled CO2 selectivity of PdZn near-surface alloys in H2 generation by methanol steam reforming. Angew Chem Int Ed 49(18):3224–3227

    CAS  Google Scholar 

  22. Knudsen J, Nilekar AU, Vang RT, Schnadt J, Kunkes EL, Dumesic JA, Mavrikakis M, Besenbacher F (2007) A Cu/Pt near-surface alloy for water–gas shift catalysis. J Am Chem Soc 129(20):6485–6490

    CAS  PubMed  Google Scholar 

  23. Hong X, Chan K, Tsai C, Nørskov JK (2016) How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catal 6(7):4428–4437

    CAS  Google Scholar 

  24. Zandkarimi B, Alexandrova AN (2019) Dynamics of subnanometer Pt clusters can break the scaling relationships in catalysis. J Phys Chem Lett 10(3):460–467

    PubMed  Google Scholar 

  25. Jansonius RP, Reid LM, Virca CN, Berlinguette CP (2019) Strain engineering electrocatalysts for selective CO2 reduction. ACS Energy Lett 4(4):980–986

    CAS  Google Scholar 

  26. Khorshidi A, Violet J, Hashemi J, Peterson AA (2018) How strain can break the scaling relations of catalysis. Nat Catal 1(4):263–268

    Google Scholar 

  27. Li Y, Sun Q (2016) Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv Energy Mater 6(17):1600463

    Google Scholar 

  28. Burton JJ, Hyman E, Fedak DG (1975) Surface segregation in alloys. J Catal 37(1):106–113

    CAS  Google Scholar 

  29. Sundaram VS, Wynblatt P (1975) A Monte Carlo study of surface segregation in alloys. Surf Sci 52(3):569–587

    CAS  Google Scholar 

  30. Ng YS, Tsong TT, McLane SB (1979) Absolute composition depth profile of a NiCu alloy in a surface segregation study. Phys Rev Lett 42(9):588–591

    CAS  Google Scholar 

  31. Tsong TT, Ng YS, McLane SB (1980) Surface segregation of a Pt–Au alloy: an atom-probe field ion microscope investigation. J Chem Phys 73(3):1464–1468

    CAS  Google Scholar 

  32. Marković NM, Widelôv A, Ross PN, Monteiro OR, Brown IG (1997) Electrooxidation of CO and CO/H2 mixtures on a Pt–Sn catalyst prepared by an implantation method. Catal Lett 43(1–2):161–166

    Google Scholar 

  33. Brankovic SR, Wang JX, Adžić RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474(1–3):L173–L179

    CAS  Google Scholar 

  34. Knupp SL, Vukmirovic MB, Haldar P, Herron JA, Mavrikakis M, Adzic RR (2010) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on carbon-supported PdIr nanoparticles. Electrocatalysis 1(4):213–223

    CAS  Google Scholar 

  35. Xie S, Choi S-I, Lu N, Roling LT, Herron JA, Zhang L, Park J, Wang J, Kim MJ, Xie Z, Mavrikakis M, Xia Y (2014) Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett 14(6):3570–3576

    CAS  PubMed  Google Scholar 

  36. Celik FE, Mavrikakis M (2015) Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys. Surf Sci 640:190–197

    CAS  Google Scholar 

  37. Greeley J, Mavrikakis M (2005) Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys. J Phys Chem B 109(8):3460–3471

    CAS  PubMed  Google Scholar 

  38. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46(3–4):249–262

    CAS  Google Scholar 

  39. Vukmirovic MB, Zhang J, Sasaki K, Nilekar AU, Uribe F, Mavrikakis M, Adzic RR (2007) Platinum monolayer electrocatalysts for oxygen reduction. Electrochim Acta 52(6):2257–2263

    CAS  Google Scholar 

  40. Nilekar AU, Mavrikakis M (2008) Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf Sci 602(14):L89–L94

    CAS  Google Scholar 

  41. Ferrin PA, Kandoi S, Zhang J, Adzic R, Mavrikakis M (2009) Molecular and atomic hydrogen interactions with Au–Ir near-surface alloys. J Phys Chem C 113(4):1411–1417

    CAS  Google Scholar 

  42. Zhou WP, Yang X, Vukmirovic MB, Koel BE, Jiao J, Peng G, Mavrikakis M, Adzic RR (2009) Improving electrocatalysts for O2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd3Fe(111) single-crystal alloy. J Am Chem Soc 131(35):12755–12762

    CAS  PubMed  Google Scholar 

  43. Kandoi S, Ferrin PA, Mavrikakis M (2010) Hydrogen on and in selected overlayer near-surface alloys and the effect of subsurface hydrogen on the reactivity of alloy surfaces. Top Catal 53(5–6):384–392

    CAS  Google Scholar 

  44. Darby MT, Stamatakis M, Michaelides A, Sykes ECH (2018) Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys. J Phys Chem Lett 9(18):5636–5646

    CAS  PubMed  Google Scholar 

  45. Lucci FR, Darby MT, Mattera MFG, Ivimey CJ, Therrien AJ, Michaelides A, Stamatakis M, Sykes ECH (2016) Controlling hydrogen activation, spillover, and desorption with Pd–Au single-atom alloys. J Phys Chem Lett 7(3):480–485

    CAS  PubMed  Google Scholar 

  46. Lucci FR, Liu J, Marcinkowski MD, Yang M, Allard LF, Flytzani-Stephanopoulos M, Sykes ECH (2015) Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nat Commun 6:8550

    PubMed  PubMed Central  Google Scholar 

  47. Pei GX, Liu XY, Wang A, Lee AF, Isaacs MA, Li L, Pan X, Yang X, Wang X, Tai Z, Wilson K, Zhang T (2015) Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal 5(6):3717–3725

    CAS  Google Scholar 

  48. Aich P, Wei H, Basan B, Kropf AJ, Schweitzer NM, Marshall CL, Miller JT, Meyer R (2015) Single-atom alloy Pd–Ag catalyst for selective hydrogenation of acrolein. J Phys Chem C 119(32):18140–18148

    CAS  Google Scholar 

  49. Thirumalai H, Kitchin JR (2018) Investigating the reactivity of single atom alloys using density functional theory. Top Catal 61:1–13

    Google Scholar 

  50. Shan J, Lucci FR, Liu J, El-Soda M, Marcinkowski MD, Allard LF, Sykes ECH, Flytzani-Stephanopoulos M (2016) Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen. Surf Sci 650:121–129

    CAS  Google Scholar 

  51. Han Z, Li S, Jiang F, Wang T, Ma X, Gong J (2014) Propane dehydrogenation over Pt–Cu bimetallic catalysts: the nature of coke deposition and the role of copper. Nanoscale 6(17):10000–10008

    CAS  PubMed  Google Scholar 

  52. Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis MN, Li R, Ye S, Knights S, Botton GA, Sham TK, Sun X (2013) Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep 3(1):1775

    PubMed Central  Google Scholar 

  53. Qiao B, Liu J, Wang Y-G, Lin Q, Liu X, Wang A, Li J, Zhang T, Liu (Jimmy) J (2015) Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal 5(11):6249–6254

    CAS  Google Scholar 

  54. Cheng M-J, Clark EL, Pham HH, Bell AT, Head-Gordon M (2016) Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C1hydrocarbons. ACS Catal 6(11):7769–7777

    CAS  Google Scholar 

  55. Jirkovský JS, Panas I, Ahlberg E, Halasa M, Romani S, Schiffrin DJ (2011) Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J Am Chem Soc 133(48):19432–19441

    PubMed  Google Scholar 

  56. Lambin P, Gaspard JP (1980) Analysis of the density of states of binary alloys. II. Surface segregation. J Phys F 10(11):2413–2428

    CAS  Google Scholar 

  57. Chelikowsky JR (1984) Predictions for surface segregation in intermetallic alloys. Surf Sci 139(2–3):L197–L203

    CAS  Google Scholar 

  58. Mukherjee S, Morán-López JL (1987) Theory of surface segregation in transition-metal alloys. Surf Sci Lett 188(3):L742–L748

    CAS  Google Scholar 

  59. Miedema AR, de Boer FR, Boom R (1977) Model predictions for the enthalpy of formation of transition metal alloys. CALPHAD 1(4):341–359

    CAS  Google Scholar 

  60. Christensen A, Ruban AV, Stoltze P, Jacobsen KW, Skriver HL, Nørskov JK, Besenbacher F (1997) Phase diagrams for surface alloys. Phys Rev B 56(10):5822–5834

    CAS  Google Scholar 

  61. Ruban AV, Skriver HL, Nørskov JK (1999) Surface segregation energies in transition-metal alloys. Phys Rev B 59(24):990–1000

    Google Scholar 

  62. Ruban AV, Skriver HL (1999) Calculated surface segregation in transition metal alloys. Comput Mater Sci 15(2):119–143

    CAS  Google Scholar 

  63. Bradley AJ, Thewlis J (2006) The crystal structure of formula-manganese. Proc R Soc A 115(771):456–471

    Google Scholar 

  64. Oberteuffer JA, Ibers JA (1970) A refinement of the atomic and thermal parameters of α-manganese from a single crystal. Acta Crystallogr B 26(10):1499–1504

    CAS  Google Scholar 

  65. Reed LE, Porter RA, Farha FE, Guillory JP (1985) Antifoulants for thermal cracking processes. United States Patent 4804487

  66. Cayton R (1993) Controlling thermal coking. 1–4

  67. Heyse JV, Johnson PG, Mulaskey BF (1998) Dehydrogenation processes, equipment and catalyst loads therefore. Issued Dec 1998

  68. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561

    CAS  Google Scholar 

  69. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269

    CAS  Google Scholar 

  70. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    CAS  Google Scholar 

  71. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    CAS  Google Scholar 

  72. Bahn SR, Jacobsen KW (2002) An object-oriented scripting interface to a legacy electronic structure code. Comput Sci Eng 4(3):56–66

    CAS  Google Scholar 

  73. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    CAS  Google Scholar 

  74. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Google Scholar 

  75. Kresse G (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775

    CAS  Google Scholar 

  76. Stevens ED, Rys J, Coppens P (1978) Quantitative comparison of theoretical calculations with the experimentally determined electron density distribution of formamide. J Am Chem Soc 100(8):2324–2328

    CAS  Google Scholar 

  77. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

    Google Scholar 

  78. Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249–256

  79. Platt JC (1999) Probabilistic outputs for SVMs comparison to regularized likelihood methods. In: Advances in large margin classifiers, pp 61-74

  80. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É (2012) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  81. Powers DMW (2011) Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J Mach Learn Technol 2(1):37–63

    Google Scholar 

  82. Zhang L, Wang A, Miller JT, Liu X, Yang X, Wang W, Li L, Huang Y, Mou CY, Zhang T (2014) Efficient and durable Au alloyed Pd single-atom catalyst for the Ullmann reaction of aryl chlorides in water. ACS Catal 4(5):1546–1553

    CAS  Google Scholar 

  83. Giannakakis G, Trimpalis A, Shan J, Qi Z, Cao S, Liu J, Ye J, Biener J, Flytzani-Stephanopoulos M (2018) NiAu single atom alloys for the non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. Top Catal 61(5–6):475–486

    CAS  Google Scholar 

  84. Pei GX, Liu XY, Yang X, Zhang L, Wang A, Li L, Wang H, Wang X, Zhang T (2017) Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal 7(2):1491–1500

    CAS  Google Scholar 

  85. Liu J, Shan J, Lucci FR, Cao S, Sykes ECH, Flytzani-Stephanopoulos M (2017) Palladium–gold single atom alloy catalysts for liquid phase selective hydrogenation of 1-hexyne. Catal Sci Technol 7(19):4276–4284

    CAS  Google Scholar 

  86. Shan J, Liu J, Li M, Lustig S, Lee S, Flytzani-Stephanopoulos M (2018) NiCu single atom alloys catalyze the C–H bond activation in the selective non-oxidative ethanol dehydrogenation reaction. Appl Catal B 226:534–543

    CAS  Google Scholar 

  87. Wrasman CJ, Boubnov A, Riscoe AR, Hoffman AS, Bare SR, Cargnello M (2018) Synthesis of colloidal Pd/Au dilute alloy nanocrystals and their potential for selective catalytic oxidations. J Am Chem Soc 140(40):12930–12939

    CAS  PubMed  Google Scholar 

  88. Boucher MB, Zugic B, Cladaras G, Kammert J, Marcinkowski MD, Lawton TJ, Sykes ECH, Flytzani-Stephanopoulos M (2013) Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Phys Chem Chem Phys 15(29):12187–12196

    CAS  PubMed  Google Scholar 

  89. Marcinkowski MD, Liu J, Murphy CJ, Liriano ML, Wasio NA, Lucci FR, Flytzani-Stephanopoulos M, Sykes ECH (2017) Selective formic acid dehydrogenation on Pt–Cu single-atom alloys. ACS Catal 7(1):413–420

    CAS  Google Scholar 

  90. Wang ZT, Darby MT, Therrien AJ, El-Soda M, Michaelides A, Stamatakis M, Sykes ECH (2016) Preparation, structure, and surface chemistry of Ni–Au single atom alloys. J Phys Chem C 120(25):13574–13580

    CAS  Google Scholar 

  91. Serna P, Concepción P, Corma A (2009) Design of highly active and chemoselective bimetallic gold–platinum hydrogenation catalysts through kinetic and isotopic studies. J Catal 265(1):19–25

    CAS  Google Scholar 

  92. Miura H, Endo K, Ogawa R, Shishido T (2017) Supported palladium–gold alloy catalysts for efficient and selective hydrosilylation under mild conditions with isolated single palladium atoms in alloy nanoparticles as the main active site. ACS Catal 7(3):1543–1553

    CAS  Google Scholar 

  93. Yu W, Porosoff MD, Chen JG (2012) Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev 112(11):5780–5817

    CAS  PubMed  Google Scholar 

  94. Qiao Y, Said N, Rauser M, Yan K, Qin F, Theyssen N, Leitner W (2017) Preparation of SBA-15 supported Pt/Pd bimetallic catalysts using supercritical fluid reactive deposition: how do solvent effects during material synthesis affect catalytic properties? Green Chem 19(4):977–986

    CAS  Google Scholar 

  95. Hou M, Mei Q, Han B (2015) Solvent effects on geometrical structures and electronic properties of metal Au, Ag, and Cu nanoparticles of different sizes. J Colloid Interface Sci 449:488–493

    CAS  PubMed  Google Scholar 

  96. Darby MT, Sykes ECH, Michaelides A, Stamatakis M (2018) Carbon monoxide poisoning resistance and structural stability of single atom alloys. Top Catal 61(5–6):428–438

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Papanikolaou KG, Darby MT, Stamatakis M (2019) CO-induced aggregation and segregation of highly dilute alloys: a density functional theory study. J Phys Chem C 123(14):9128–9138

    CAS  Google Scholar 

  98. Andersson KJ, Calle-Vallejo F, Rossmeisl J, Chorkendorff I (2009) Adsorption-driven surface segregation of the less reactive alloy component. J Am Chem Soc 131(6):2404–2407

    CAS  PubMed  Google Scholar 

  99. Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD et al (2014) XSEDE: accelerating scientific discovery. Comput Sci Eng 16(5):62–74

    Google Scholar 

Download references

Acknowledgements

Q.K.D., K.P. and L.C.G. acknowledge financial support from NSF CAREER Award #1454384. K.K.R. acknowledges the NASA Space Technology Research Fellowship (Grant # 80NSSC17K0148) and D.M. was supported by DOE NETL #DE-EE0008332. Computational resources were provided by the Extreme Science and Engineering Discovery Environment (XSEDE) supported by National Science Foundation (ACI-1548562) [99] and the National Energy Research Scientific Computing (NERSC) Center, a DOE Office of Science User Facility supported by the Office of Science, U.S. Department of Energy, under Contract Number DE-AC02-05CH11231. Additional computational work was performed on the uHPC Cluster managed by the University of Houston and acquired through NSF-MRI Award Number 1531814. Finally, the authors acknowledge the use of the Maxwell/Opuntia/Sabine Cluster and the advanced support from the Research Computing Data Core at the University of Houston to carry out the research presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars C. Grabow.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7089 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, K.K., Do, Q.K., Pham, K. et al. Extendable Machine Learning Model for the Stability of Single Atom Alloys. Top Catal 63, 728–741 (2020). https://doi.org/10.1007/s11244-020-01267-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01267-2

Keywords

Navigation