Skip to main content

Advertisement

Log in

Impaired Parahippocampal Gyrus–Orbitofrontal Cortex Circuit Associated with Visuospatial Memory Deficit as a Potential Biomarker and Interventional Approach for Alzheimer Disease

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The parahippocampal gyrus–orbitofrontal cortex (PHG–OFC) circuit in humans is homologous to the postrhinal cortex (POR)–ventral lateral orbitofrontal cortex (vlOFC) circuit in rodents. Both are associated with visuospatial malfunctions in Alzheimer’s disease (AD). However, the underlying mechanisms remain to be elucidated. In this study, we explored the relationship between an impaired POR–vlOFC circuit and visuospatial memory deficits through retrograde tracing and in vivo local field potential recordings in 5XFAD mice, and investigated alterations of the PHG–OFC circuit by multi-domain magnetic resonance imaging (MRI) in patients on the AD spectrum. We demonstrated that an impaired glutamatergic POR–vlOFC circuit resulted in deficient visuospatial memory in 5XFAD mice. Moreover, MRI measurements of the PHG–OFC circuit had an accuracy of 77.33% for the classification of amnestic mild cognitive impairment converters versus non-converters. Thus, the PHG–OFC circuit explains the neuroanatomical basis of visuospatial memory deficits in AD, thereby providing a potential predictor for AD progression and a promising interventional approach for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maharjan DM, Dai YY, Glantz EH, Jadhav SP. Disruption of dorsal hippocampal - prefrontal interactions using chemogenetic inactivation impairs spatial learning. Neurobiol Learn Mem 2018, 155: 351–360.

    PubMed  PubMed Central  Google Scholar 

  2. Viena TD, Linley SB, Vertes RP. Inactivation of nucleus reuniens impairs spatial working memory and behavioral flexibility in the rat. Hippocampus 2018, 28: 297–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rajah MN, Wallace LMK, Ankudowich E, Yu EH, Swierkot A, Patel R, et al. Family history and APOE4 risk for Alzheimer’s disease impact the neural correlates of episodic memory by early midlife. Neuroimage Clin 2017, 14: 760–774.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruggiero G, Iavarone A, Iachini T. Allocentric to egocentric spatial switching: Impairment in aMCI and Alzheimer’s disease Patients? Curr Alzheimer Res 2018, 15: 229–236.

    CAS  PubMed  Google Scholar 

  5. Good MA, Hale G. The “Swedish” mutation of the amyloid precursor protein (APPswe) dissociates components of object-location memory in aged Tg2576 mice. Behav Neurosci 2007, 121: 1180–1191.

    PubMed  Google Scholar 

  6. Bianchini F, Di Vita A, Palermo L, Piccardi L, Blundo C, Guariglia C. A selective egocentric topographical working memory deficit in the early stages of Alzheimer’s disease: a preliminary study. Am J Alzheimers Dis Other Demen 2014, 29: 749–754.

    CAS  PubMed  Google Scholar 

  7. Allegri RF, Pertierra L, Cohen G, Chrem Mendez P, Russo MJ, Calandri I, et al. A biological classification for Alzheimer’s disease - Amyloid, Tau and Neurodegeneration (A/T/N): results from the Argentine-Alzheimer’s Disease Neuroimaging Initiative. Int Psychogeriatr 2019: 1–2.

  8. Botha H, Mantyh WG, Murray ME, Knopman DS, Przybelski SA, Wiste HJ, et al. FDG-PET in tau-negative amnestic dementia resembles that of autopsy-proven hippocampal sclerosis. Brain 2018, 141: 1201–1217.

    PubMed  PubMed Central  Google Scholar 

  9. Jack CR, Jr., Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 2016, 87: 539–547.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sills JB, Connors BW, Burwell RD. Electrophysiological and morphological properties of neurons in layer 5 of the rat postrhinal cortex. Hippocampus 2012, 22: 1912–1922.

    PubMed  PubMed Central  Google Scholar 

  11. Mishkin M, Ungerleider LG. Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res 1982, 6: 57–77.

    CAS  PubMed  Google Scholar 

  12. Ungerleider LG, Courtney SM, Haxby JV. A neural system for human visual working memory. Proc Natl Acad Sci U S A 1998, 95: 883–890.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ungerleider LG, Haxby JV. ‘What’ and ‘where’ in the human brain. Curr Opin Neurobiol 1994, 4: 157–165.

    CAS  PubMed  Google Scholar 

  14. Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nat Rev Neurosci 2011, 12: 217–230.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nyffeler T, Gutbrod K, Pflugshaupt T, von Wartburg R, Hess CW, Muri RM. Allocentric and egocentric spatial impairments in a case of topographical disorientation. Cortex 2005, 41: 133–143.

    PubMed  Google Scholar 

  16. Ishii K, Koide R, Mamada N, Tamaoka A. Topographical disorientation in a patient with right parahippocampal infarction. Neurol Sci 2017, 38: 1329–1332.

    PubMed  Google Scholar 

  17. Ramos JM. Differential contribution of hippocampus, perirhinal cortex and postrhinal cortex to allocentric spatial memory in the radial maze. Behav Brain Res 2013, 247: 59–64.

    PubMed  Google Scholar 

  18. Qi X, Du ZJ, Zhu L, Liu X, Xu H, Zhou Z, et al. The glutamatergic postrhinal cortex-ventrolateral orbitofrontal cortex pathway regulates spatial memory retrieval. Neurosci Bull 2019, 35: 447–460.

    PubMed  PubMed Central  Google Scholar 

  19. Von Der Heide RJ, Skipper LM, Klobusicky E, Olson IR. Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain 2013, 136: 1692–1707.

    Google Scholar 

  20. Farovik A, Place RJ, McKenzie S, Porter B. Orbitofrontal cortex encodes memories within value-based schemas and represents contexts that guide memory retrieval. J Neurosci 2015, 35: 8333–8344.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chrastil ER, Sherrill KR, Hasselmo ME, Stern CE. Which way and how far? Tracking of translation and rotation information for human path integration. Hum Brain Mapp 2016, 37: 3636–3655.

    PubMed  PubMed Central  Google Scholar 

  22. Diehl B, Busch RM, Duncan JS, Piao Z, Tkach J, Lüders HO. Abnormalities in diffusion tensor imaging of the uncinate fasciculus relate to educed memory in temporal lobe epilepsy. Epilepsia 2008, 49:1409–1418.

    PubMed  Google Scholar 

  23. Li XR, Ren YD, Cao B, Huang XL. Analysis of white matter characteristics with tract-based spatial statistics according to diffusion tensor imaging in early Parkinson’s disease. Neurosci Lett 2018, 675: 127–132.

    CAS  PubMed  Google Scholar 

  24. Raber J, Olsen RHJ, Su W, Foster S, Xing R, Acevedo SF, et al. CD44 is required for spatial memory retention and sensorimotor functions. Behav Brain Res 2014, 275: 146–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Z, Dai Z, Shu H, Liu D, Guo Q, He Y, et al. Cortical thickness and microstructural white matter changes detect amnestic mild cognitive impairment. J Alzheimers Dis 2017, 56: 415–428.

    PubMed  Google Scholar 

  26. Juh R, Suh T, Kim S. SU-E-I-73: SU-E-I-73: Gray matter atrophy and white matter tract abnormalities by voxel wise correlation analysis in patients with Alzheimer’s disease. Med Phys 2012, 39: 3641.

    CAS  PubMed  Google Scholar 

  27. Morikawa M, Kiuchi K, Taoka T, Nagauchi K, Kichikawa K, Kishimoto T. Uncinate fasciculus-correlated cognition in Alzheimer’s disease: a diffusion tensor imaging study by tractography. Psychogeriatrics 2010, 10: 15–20.

    PubMed  Google Scholar 

  28. Hiyoshi-Taniguchi K, Oishi N, Namiki C, Miyata J, Murai T, Cichocki A, et al. The uncinate fasciculus as a predictor of conversion from amnestic mild cognitive impairment to Alzheimer disease. J Neuroimaging 2015, 25: 748–753.

    PubMed  Google Scholar 

  29. Bussey TJ, Duck J, Muir JL, Aggleton JP. Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices in the rat. Behav Brain Res 2000, 111: 187–202.

    CAS  PubMed  Google Scholar 

  30. Fujie S, Namiki C, Nishi H, Yamada M, Miyata J, Sakata D, et al. The role of the uncinate fasciculus in memory and emotional recognition in amnestic mild cognitive impairment. Dement Geriatr Cogn Disord 2008, 26: 432–439.

    PubMed  Google Scholar 

  31. Metzler-Baddeley C, Hunt S, Jones DK, Leemans A, Aggleton JP, O’Sullivan MJ. Temporal association tracts and the breakdown of episodic memory in mild cognitive impairment. Neurology 2012, 79: 2233–2240.

    PubMed  PubMed Central  Google Scholar 

  32. Krogsrud SK, Fjell AM, Tamnes CK, Grydeland H, Due-Tonnessen P, Bjornerud A, et al. Development of white matter microstructure in relation to verbal and visuospatial working memory-A longitudinal study. PLoS One 2018, 13: e0195540.

    PubMed  PubMed Central  Google Scholar 

  33. Rombouts SA, Barkhof F, Witter MP, Machielsen WC, Scheltens P. Anterior medial temporal lobe activation during attempted retrieval of encoded visuospatial scenes: an event-related fMRI study. Neuroimage 2001, 14: 67–76.

    CAS  PubMed  Google Scholar 

  34. Rosenbaum RS, Ziegler M, Winocur G, Grady CL, Moscovitch M. “I have often walked down this street before”: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus 2004, 14: 826–835.

    PubMed  Google Scholar 

  35. Hohenfeld C, Nellessen N, Dogan I, Kuhn H, Muller C, Papa F, et al. Cognitive improvement and brain changes after real-time functional MRI neurofeedback training in healthy elderly and prodromal Alzheimer’s disease. Front Neurol 2017, 8: 384.

    PubMed  PubMed Central  Google Scholar 

  36. Yetkin FZ, Rosenberg RN, Weiner MF, Purdy PD, Cullum CM. FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease. Eur Radiol 2006, 16: 193–206.

    PubMed  Google Scholar 

  37. Jacobs HI, Gronenschild EH, Evers EA, Ramakers IH, Hofman PA, Backes WH, et al. Visuospatial processing in early Alzheimer’s disease: a multimodal neuroimaging study. Cortex 2015, 64: 394–406.

    PubMed  Google Scholar 

  38. Naber PA, Witter MP, Lopes da Silva FH. Differential distribution of barrel or visual cortex. Evoked responses along the rostro-caudal axis of the peri- and postrhinal cortices. Brain Res 2000, 877: 298–305.

    CAS  PubMed  Google Scholar 

  39. Bucci DJ, Burwell RD. Deficits in attentional orienting following damage to the perirhinal or postrhinal cortices. Behav Neurosci 2004, 118: 1117–1122.

    PubMed  Google Scholar 

  40. Lu Y, Zhu ZG, Ma QQ, Su YT, Han Y, Wang X, et al. A critical time-window for the selective induction of hippocampal memory consolidation by a brief episode of slow-wave sleep. Neurosci Bull 2018, 34: 1091–1099.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Duan J, Fu H, Zhang J. Activation of parvalbumin-positive neurons in both retina and primary visual cortex improves the feature-selectivity of primary visual cortex neurons. Neurosci Bull 2017, 33: 255–263.

    PubMed  PubMed Central  Google Scholar 

  42. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, et al. The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex 2016, 26: 3508–3526.

    PubMed  PubMed Central  Google Scholar 

  43. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of Support Vector Machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics 2018, 15: 41–51.

    CAS  Google Scholar 

  44. Tang X, Wu D, Yao Y, Gu L, Chen X, Ren Q, et al. Dorsal hippocampal changes in T2 relaxation times are associated with early spatial cognitive deficits in 5XFAD mice. Brain Res Bull 2019, 153: 150–161.

    PubMed  Google Scholar 

  45. Wu D, Tang X, Gu LH. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in the early stage of 5XFAD mice. CNS Neurosci Ther 2018, 24: 381–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Beracochea D, Krazem A, Henkouss N, Haccard G, Roller M, Fromentin E. Intake of wild blueberry powder improves episodic-like and working memory during normal aging in mice. Planta Med 2016, 82: 1163–1168.

    CAS  PubMed  Google Scholar 

  47. Zhang M, Moon C, Chan GC, Yang L, Zheng F, Conti AC, et al. Ca-stimulated type 8 adenylyl cyclase is required for rapid acquisition of novel spatial information and for working/episodic-like memory. J Neurosci 2008, 28: 4736–4744.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MR, Blurton-Jones M, et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 2016, 139: 1265–1281.

    PubMed  PubMed Central  Google Scholar 

  49. Rabbitt LR, Roberts DM, McDonald CG, Peterson MS. Neural activity reveals perceptual grouping in working memory. Int J Psychophysiol 2017, 113: 40–45.

    PubMed  Google Scholar 

  50. Sharma A, Kesari KK, Saxena VK, Sisodia R. Ten gigahertz microwave radiation impairs spatial memory, enzymes activity, and histopathology of developing mice brain. Molecular and cellular biochemistry 2017, 435: 1–13.

    CAS  PubMed  Google Scholar 

  51. Storbeck J, Watson P. Verbal makes it positive, spatial makes it negative: working memory biases judgments, attention, and moods. Emotion 2014, 14: 1072–1086.

    PubMed  Google Scholar 

  52. Ring M, Gaigg SB, Altgassen M, Barr P, Bowler DM. Allocentric versus egocentric spatial memory in adults with autism spectrum disorder. J Autism Dev Disord 2018, 48: 2101–2111.

    PubMed  PubMed Central  Google Scholar 

  53. Hwang E, Willis BS, Burwell RD. Prefrontal connections of the perirhinal and postrhinal cortices in the rat. Behav Brain Res 2018, 354: 8–21.

    PubMed  Google Scholar 

  54. Furtak SC, Ahmed OJ, Burwell RD. Single neuron activity and theta modulation in postrhinal cortex during visual object discrimination. Neuron 2012, 76: 976–988.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Funahashi S. The Contribution of the Orbitofrontal Cortex to the Preference for Visual Stimuli. Brain Nerve 2015, 67: 711–722.

    PubMed  Google Scholar 

  56. Schuck NW, Cai MB, Wilson RC, Niv Y. Human orbitofrontal cortex represents a cognitive map of state space. Neuron 2016, 91: 1402–1412.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Maille A, Schradin C. Survival is linked with reaction time and spatial memory in African striped mice. Biol Lett 2016, 12: 20160346.

    PubMed  PubMed Central  Google Scholar 

  58. Farahmandfar M, Kadivar M, Naghdi N, Choopani S, Zarrindast M-R. Influence of pre-exposure to morphine on cannabinoid-induced impairment of spatial memory in male rats. Behav Brain Res 2013, 256: 157–164.

    CAS  PubMed  Google Scholar 

  59. Quinn LK, Nitz DA, Chiba AA. Learning-dependent dynamics of beta-frequency oscillations in the basal forebrain of rats. Eur J Neurosci 2010, 32: 1507–1515.

    PubMed  Google Scholar 

  60. Zanos S, Rembado I, Chen D, Fetz EE. Phase-locked stimulation during cortical beta oscillations produces bidirectional synaptic plasticity in awake monkeys. Curr Biol 2018, 28: 2515–2526.e2514.

    Google Scholar 

  61. Lopes-Dos-Santos V, van de Ven GM, Morley A, Trouche S, Campo-Urriza N, Dupret D. Parsing hippocampal theta oscillations by nested spectral components during spatial exploration and memory-guided behavior. Neuron 2018, 100: 940–952.e947.

    Google Scholar 

  62. Li C, Duara R, Loewenstein DA, Izquierdo W, Cabrerizo M, Barker W, et al. Greater regional cortical thickness is associated with selective vulnerability to atrophy in Alzheimer’s disease, independent of amyloid load and APOE genotype. J Alzheimers Dis 2019, 69: 145–156.

    CAS  PubMed  Google Scholar 

  63. Rami L, Sole-Padulles C, Fortea J, Bosch B, Llado A, Antonell A, et al. Applying the new research diagnostic criteria: MRI findings and neuropsychological correlations of prodromal AD. Int J Geriatr Psychiatry 2012, 27: 127–134.

    PubMed  Google Scholar 

  64. Echavarri C, Aalten P, Uylings HB, Jacobs HI, Visser PJ, Gronenschild EH, et al. Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer’s disease. Brain Struct Funct 2011, 215: 265–271.

    CAS  PubMed  Google Scholar 

  65. Zhu L, Shu H, Liu D, Guo Q, Wang Z, Zhang Z. Apolipoprotein E epsilon4 Specifically Modulates the Hippocampus Functional Connectivity Network in Patients With Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2018, 10: 289.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hanyu H, Asano T, Kogure D, Sakurai H, Iwamoto T, Takasaki M. Relation between hippocampal damage and cerebral cortical function in Alzheimer’s disease. Nihon Ronen Igakkai Zasshi. 2000, 37: 921–927.

    CAS  PubMed  Google Scholar 

  67. Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV. Neurostructural predictors of Alzheimer’s disease: a meta-analysis of VBM studies. Neurobiol Aging 2011, 32: 1733–1741.

    PubMed  Google Scholar 

  68. Squarzoni P, Tamashiro-Duran J, Souza Duran FL, Santos LC, Vallada HP, Menezes PR, et al. Relationship between regional brain volumes and cognitive performance in the healthy aging: an MRI study using voxel-based morphometry. J Alzheimers Dis 2012, 31: 45–58.

    PubMed  Google Scholar 

  69. Hreha K, Chaudhari A, Kong Y, Maduri P, Barrett AM. Illustrating where spatial perception versus memory-based representation: spatial neglect in a distinguished artist; a case report. Neurocase 2018, 24: 151–155.

    PubMed  PubMed Central  Google Scholar 

  70. Mitolo M, Stanzani-Maserati M, Capellari S, Testa C, Rucci P, Poda R, et al. Predicting conversion from mild cognitive impairment to Alzheimer’s disease using brain (1)H-MRS and volumetric changes: A two- year retrospective follow-up study. Neuroimage Clin 2019, 23: 101843.

    PubMed  PubMed Central  Google Scholar 

  71. Mattsson N, Insel PS, Donohue M, Jogi J, Ossenkoppele R, Olsson T, et al. Predicting diagnosis and cognition with (18)F-AV-1451 tau PET and structural MRI in Alzheimer’s disease. Alzheimers Dement 2019, 15: 570–580.

    PubMed  Google Scholar 

  72. Salmon E, Lekeu F, Garraux G, Guillaume B, Magis D, Luxen A, et al. Metabolic correlates of clinical heterogeneity in questionable Alzheimer’s disease. Neurobiol Aging 2008, 29: 1823–1829.

    CAS  PubMed  Google Scholar 

  73. Wen P, Rao X, Xu L, Zhang Z, Jia F, He X, et al. Cortical organization of centrifugal afferents to the olfactory bulb: mono- and trans-synaptic tracing with recombinant neurotropic viral tracers. Neurosci Bull 2019, 35: 709–723.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all participants in the study, without whom this research would not have been possible. This work was supported by the National Natural Science Foundation of China (81420108012, 81671046, 91832000, and 31700936), the Program of Excellent Talents in Medical Science of Jiangsu Province, China (JCRCA2016006), a Special Project of Clinical Medicine Science and Technology in Jiangsu Province, China (BL2014077), a Guangdong Province Grant (2017A030310496), Key-Area Research and Development Program of Guangdong Province, China (2018B030331001), a National Special Support Grant (W02020453), and Guangdong Provincial Key Laboratory of Brain Connectome and Behavior (2017B030301017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Han, Liping Wang or Zhijun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Wang, Z., Du, Z. et al. Impaired Parahippocampal Gyrus–Orbitofrontal Cortex Circuit Associated with Visuospatial Memory Deficit as a Potential Biomarker and Interventional Approach for Alzheimer Disease. Neurosci. Bull. 36, 831–844 (2020). https://doi.org/10.1007/s12264-020-00498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00498-3

Keywords

Navigation