Skip to main content
Log in

Effective and efficient characterization of lubrication flow over soft coatings

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This work models the fluid-structure interactions associated with separating a solid from a soft elastic film in a liquid environment. One side of the soft film is permanently attached to a rigid substrate. The ensuing liquid flow and elastic deformations are derived by considering a system of partial differential equations, that govern the mechanics of the separation process. A finite element based computational scheme is developed to solve the governing equations and predict the resultant forces acting on the solid. It is shown that the resulting forces are influenced by the elasticity of the film for an initial duration and by the viscosity of the liquid at larger times. The proposed model is utilized to shed insights into the mechanics of the separation process in constrained-surface stereolithography process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Keyes DE, McInnes LC, Woodward C, Gropp W, Myra E, Pernice M, Bell J, Brown J, Clo A, Connors J et al (2013) Multiphysics simulations: challenges and opportunities. Int J High Perform Comput Appl 27(1):4–83

    Article  Google Scholar 

  2. Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJ (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Younis MI (2004) Modeling and simulation of microelectromechanical systems in multi-physics fields. Ph. D. Thesis, Virginia Tech

  4. Di Blasi C (1993) Modeling and simulation of combustion processes of charring and non-charring solid fuels. Prog Energy Combust Sci 19(1):71–104

    Article  Google Scholar 

  5. Bhushan B (2003) Adhesion and stiction: mechanisms, measurement techniques, and methods for reduction. J Vac Sci Technol B 21(6):2262–2296

    Article  Google Scholar 

  6. McFarlane JS, Tabor D (1950) Adhesion of solids and the effect of surface films. Proc R Soc Lond A Math Phys Eng Sci 202(1069):224–243

    ADS  Google Scholar 

  7. Gay C (2002) Stickiness some fundamentals of adhesion. Integr Comp Biol 42(6):1123–1126

    Article  Google Scholar 

  8. Reynolds O (1886) On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil. Proc R Soc Lond 40(242–245):191–203

    MATH  Google Scholar 

  9. Szeri AZ (2010) Fluid film lubrication. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  10. Skotheim J, Mahadevan L (2004) Soft lubrication. Phys Rev Lett 92(24):245509

    Article  ADS  Google Scholar 

  11. Kaveh F, Ally J, Kappl M, Butt HJ (2014) Hydrodynamic force between a sphere and a soft, elastic surface. Langmuir 30(39):11619–11624

    Article  Google Scholar 

  12. Wang Y, Dhong C, Frechette J (2015) Out-of-contact elastohydrodynamic deformation due to lubrication forces. Phys Rev Lett 115(24):248302

    Article  ADS  Google Scholar 

  13. Saintyves B, Jules T, Salez T, Mahadevan L (2016) Self-sustained lift and low friction via soft lubrication. Proc Natl Acad Sci USA 113(21):5847–5849

    Article  ADS  Google Scholar 

  14. Stefan M (1874) Experiments on apparent adhesion. Phil Mag S 4 47(314):465–466

    Article  Google Scholar 

  15. Engmann J, Servais C, Burbidge AS (2005) Squeeze flow theory and applications to rheometry: a review. J Non Newton Fluid Mech 132(1):1–27

    Article  MATH  Google Scholar 

  16. Higginson G, Norman R (1974) A model investigation of squeeze-film lubrication in animal joints. Phys Med Biol 19(6):785

    Article  Google Scholar 

  17. Brau F, Lanterbecq D, Zghikh LN, Bels V, Damman P (2016) Dynamics of prey prehension by chameleons through viscous adhesion. Nat Phys 10:931–935

    Article  Google Scholar 

  18. Dhong C, Fréchette J (2015) Coupled effects of applied load and surface structure on the viscous forces during peeling. Soft Matter 11(10):1901–1910

    Article  ADS  Google Scholar 

  19. Carlson A, Mahadevan L (2015) Protein mediated membrane adhesion. Phys Fluids 27(5):051901

    Article  ADS  Google Scholar 

  20. Wright V, Dowson D (1976) Lubrication and cartilage. J Anat 121(Pt 1):107

    Google Scholar 

  21. Pudenz RH, Shelden CH (1946) The lucite calvarium-a method for direct observation of the brain: Ii. cranial trauma and brain movement. J Neurosurg 3(6):487–505

    Article  Google Scholar 

  22. Venketeswaran A (2019) Computationally effective and efficient methods for interface characterization using cohesive zone model and lubrication theory. Ph. D. Thesis, State University of New York at Buffalo

  23. Kudish II (2013) Elastohydrodynamic lubrication for line and point contacts: asymptotic and numerical approaches. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  24. Trouilloud R, Tony SY, Hosoi A, Lauga E (2008) Soft swimming: exploiting deformable interfaces for low reynolds number locomotion. Phys Rev Lett 101(4):048102

    Article  ADS  Google Scholar 

  25. Francis B, Horn R (2001) Apparatus-specific analysis of fluid adhesion measurements. J Appl Phys 89(7):4167–4174

    Article  ADS  Google Scholar 

  26. Gervais T, El-Ali J, Günther A, Jensen KF (2006) Flow-induced deformation of shallow microfluidic channels. Lab Chip 6(4):500–507

    Article  Google Scholar 

  27. Dendukuri D, Gu SS, Pregibon DC, Hatton TA, Doyle PS (2007) Stop-flow lithography in a microfluidic device. Lab Chip 7(7):818–828

    Article  Google Scholar 

  28. Cawthorn C, Balmforth N (2010) Contact in a viscous fluid. Part 1. A falling wedge. J Fluid Mech 646:327–338

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Constantinescu V (1995) Laminar viscous flow. Springer, New York

    Book  MATH  Google Scholar 

  30. Bocquet L, Quéré D, Witten TA, Cugliandolo LF (2017) Soft interfaces: lecture notes of the les houches summer school: volume 98, July 2012. Oxford University Press, Oxford

    MATH  Google Scholar 

  31. Hjelmstad KD (2004) Fundamentals of structural mechanics. Springer, New York

    Google Scholar 

  32. Argatov I, Mishuris G (2014) Contact mechanics of articular cartilage layers. Springer International Publishing, Switzerland, pp 1–7

    MATH  Google Scholar 

  33. Sneddon IN (1975) Application of integral transforms in the theory of elasticity, vol 33. Springer, New York

    MATH  Google Scholar 

  34. Li J, Chou TW (1997) Elastic field of a thin-film/substrate system under an axisymmetric loading. Int J Solids Struct 34(35–36):4463–4478

    Article  MATH  Google Scholar 

  35. Wang Y, Tan MR, Frechette J (2017a) Elastic deformation of soft coatings due to lubrication forces. Soft Matter 13(38):6718–6729

    Article  ADS  Google Scholar 

  36. Wang Y, Pilkington GA, Dhong C, Frechette J (2017b) Elastic deformation during dynamic force measurements in viscous fluids. Curr Opin Colloid Interface Sci 27:43–49

    Article  Google Scholar 

  37. Leroy S, Charlaix E (2011) Hydrodynamic interactions for the measurement of thin film elastic properties. J Fluid Mech 674:389–407

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Winkler E (1867) Die Lehre von der Elasticitaet und Festigkeit mit besondere Ruecksicht auf ihre Anwendung in der Technik, fuer polytechnische Schuhlen, Bauakademien, Ingenieure, Maschienenbauer, Architecten, etc. Vortraege ueber Eisenbahnbau. Vol. 1, Prague: H. Dominicus

  39. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New Jersey

    MATH  Google Scholar 

  40. Booker J, Huebner K (1972) Application of finite element methods to lubrication: an engineering approach. J Lubr Technol 94(4):313–323

    Article  Google Scholar 

  41. MATLAB (2014) version 8.3 (R2014a). The Mathworks, Inc, Natick, Massachusetts

  42. Abramowitz M, Stegun IA et al (1972) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol 55. Dover Publications, New York

    MATH  Google Scholar 

  43. Dassault Systèmes Simulia Corp. (2017) Abaqus Analysis User’s Guide. Providence, Rhode Island, USA

  44. Gradl C (2017) Hydraulic stepper drive, conceptual study, design and experiments. Ph. D Thesis, Johannes Kepler Universität Linz

  45. Gibson I, Rosen D, Stucker B (2010) Additive manufacturing technologies. Springer, New York

    Book  Google Scholar 

  46. Bártolo PJ (2011) Stereolithography: materials, processes and applications. Springer, New York

    Book  Google Scholar 

  47. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A et al (2015) Continuous liquid interface production of 3d objects. Science 347(6228):1349–1352

    Article  ADS  Google Scholar 

  48. Pan Y, Zhou C, Chen Y (2012) A fast mask projection stereolithography process for fabricating digital models in minutes. J Manuf Sci Eng 134(5):051011

    Article  Google Scholar 

  49. Huang YM, Jiang CP (2005) On-line force monitoring of platform ascending rapid prototyping system. J Mater Process Technol 159(2):257–264

    Article  Google Scholar 

  50. Pan Y, He H, Xu J, Feinerman A (2017) Study of separation force in constrained surface projection stereolithography. Rapid Prototyp J. https://doi.org/10.1108/RPJ-12-2015-0188

    Article  Google Scholar 

  51. Ye H, Venketeswaran A, Das S, Zhou C (2017) Investigation of separation force for constrained-surface stereolithography process from mechanics perspective. Rapid Prototyp J 23(4):696–710

    Article  Google Scholar 

  52. Dendukuri D, Panda P, Haghgooie R, Kim JM, Hatton TA, Doyle PS (2008) Modeling of oxygen-inhibited free radical photopolymerization in a pdms microfluidic device. Macromolecules 41(22):8547–8556

    Article  ADS  Google Scholar 

  53. Liravi F, Das S, Zhou C (2015) Separation force analysis and prediction based on cohesive element model for constrained-surface stereolithography processes. Comput Aided Des 69:134–142

    Article  Google Scholar 

  54. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Advances in applied mechanics. Elsevier, Amsterdam, pp 55–129

    Google Scholar 

  55. Pan Y, Chen Y, Zhou C (2012) Fast recoating methods for the projection-based stereolithography process in micro-and macro-scales. In: Proceeding of solid freeform fabrication symposium, Austin, Texas

  56. Greaves GN, Greer A, Lakes R, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10(11):823–837

    Article  ADS  Google Scholar 

  57. (2018) SLA materials technical data comparison chart. https://www.forecast3d.com/materials/sla

  58. Weekley S, Waters S, Jensen O (2006) Transient elastohydrodynamic drag on a particle moving near a deformable wall. Q J Mech Appl Math 59(2):277–300

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonjoy Das.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was financially supported by the National Science Foundation award number 1728525.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 161 KB)

Appendices

Appendix A: Lubrication theory for liquid flow

Recall from Sect. 2.1 that the governing equations for liquid flow in a thin gap between moving surfaces, can be suitably approximated using lubrication theory as:

$$\begin{aligned}&\mu \partial _{zz}\mathbf {v}_{\mathbf {x}}=\nabla _{\mathbf {x}}p \end{aligned}$$
(A.1a)
$$\begin{aligned}&\partial _{z}p=0 \end{aligned}$$
(A.1b)
$$\begin{aligned}&\nabla \cdot {\mathbf {v}}=0 \end{aligned}$$
(A.1c)

It is assumed that the boundary conditions at the moving solid-liquid interfaces \(\left( \Gamma ^{fI}, \Gamma ^{sI}\right)\) are prescribed using no-slip and no-penetration boundary conditions, as given below:

$$\begin{aligned} \text{ No-slip: }&\mathbf {v}_{\mathbf {x}}=\mathbf {v}_{\mathbf {x}}^{fI}\left( \mathbf {x},t\right) , \, \forall \left( \mathbf {x},z\right) \in \Gamma ^{fI}\left( t\right) \nonumber \\&\mathbf {v}_{\mathbf {x}}=\mathbf {v}_{\mathbf {x}}^{sI}\left( \mathbf {x},t\right) , \, \forall \left( \mathbf {x},z\right) \in \Gamma ^{sI}\left( t\right) \end{aligned}$$
(A.2)
$$\begin{aligned} \text{ No-penetration: }&v_{z}=\text {d}{h_{\scriptscriptstyle {f}}}{t}\left( \mathbf {x},t\right) , \, \forall \left( \mathbf {x},z\right) \in \Gamma ^{fI}\left( t\right) \nonumber \\&v_{z}=\text {d}{h_s}{t}\left( \mathbf {x},t\right) , \, \forall \left( \mathbf {x},z\right) \in \Gamma ^{sI}\left( t\right) \end{aligned}$$
(A.3)

It is evident from Eq. A.1b that the pressure variable p is independent of z, resulting in \(p\equiv p\left( \mathbf {x},t\right)\). Subsequently, Eq. A.1a can be integrated twice along z. Let \(\eta\) denote a non-dimensional translated coordinate of z, such that \(\eta \in \left[ 0,1\right]\) in the gap. Rewriting Eq. A.1a in terms of \(\eta\):

$$\begin{aligned} \partial _{\eta \eta } \mathbf {v}_{\mathbf {x}} =\frac{h_l^2}{\mu } \nabla _{{\mathbf {x}}} p , \quad \text{ where } \eta =\frac{z-h_{\scriptscriptstyle {f}}}{h_l}. \end{aligned}$$
(A.4)

Next, integrating Eq. A.4 at a fixed \(\mathbf {x}\) and along \(\eta\), an analytical representation of \(\mathbf {v}_{\mathbf {x}}\) can be obtained in terms of \(\nabla _{\mathbf {x}}p\) and the no-slip boundary velocities given in Eq. A.2:

$$\begin{aligned} \mathbf {v}_{\mathbf {x}}= \frac{h_l^2}{2\mu } \left( {\eta ^2-\eta } \right) \, \nabla _{\mathbf {x}}p + \left( 1-\eta \right) \mathbf {v}_{\mathbf {x}}^{fI} \, + \left( \eta \right) \mathbf {v}_{\mathbf {x}}^{sI}. \end{aligned}$$
(A.5)

However, both p and \(v_z\) are unknown and need to be determined from the continuity equation Eq. A.1c. A common trick employed in lubrication theory is to use the averaged form of Eq. A.1c along gap thickness:

$$\begin{aligned} \int \nolimits _{h_{\scriptscriptstyle {f}}}^{h_s} \nabla \cdot \mathbf {v} dz =&\left( \int \nolimits _{h_{\scriptscriptstyle {f}}}^{h_s} \nabla _{\mathbf {x}}\cdot \mathbf {v}_{\mathbf {x}}\mathrm {d}z \right) \nonumber \\&+ v_z\left( \mathbf {x},h_s,t\right) - v_z\left( \mathbf {x},h_{\scriptscriptstyle {f}},t\right) =0 \end{aligned}$$
(A.6)

where the integral on R.H.S. of Eq. A.6 can be expanded using Leibniz integral rule as

$$\begin{aligned} \int \nolimits _{h_{\scriptscriptstyle {f}}}^{h_s} \left( \nabla _{\mathbf {x}}\cdot \mathbf {v}_{\mathbf {x}} \right) \mathrm {d}z =&\nabla _{\mathbf {x}}\cdot \left( \int \nolimits _{h_{\scriptscriptstyle {f}}}^{h_s}\mathbf {v}_{\mathbf {x}} \, dz\right) \nonumber \\&-\mathbf {v}_{\mathbf {x}}^{sI} \cdot \nabla _{\mathbf {x}}h_s\, + \mathbf {v}_{\mathbf {x}}^{fI} \cdot \nabla _{\mathbf {x}}h_{\scriptscriptstyle {f}} \end{aligned}$$
(A.7)

and the last two terms in Eq. A.6 are given by the no-penetration b.c. given in Eq. A.3:

$$\begin{aligned}&v_z\left( \mathbf {x},h_{\scriptscriptstyle {f}},t\right) = \text {d}{h_{\scriptscriptstyle {f}}}{t} =\dot{h}_{\scriptscriptstyle {f}}\left( \mathbf {x},t\right) + \mathbf {v}_{\mathbf {x}}^{fI} \cdot \nabla _{\mathbf {x}}h_{\scriptscriptstyle {f}} \nonumber \\&v_z\left( \mathbf {x},h_s,t\right) = \text {d}{h_s}{t}=\dot{h}_s\left( \mathbf {x},t\right) + \mathbf {v}_{\mathbf {x}}^{sI}\cdot \nabla _{\mathbf {x}}h_s. \end{aligned}$$
(A.8)

Substituting Eqs. A.5, A.7A.8 in Eq. A.6 and using \(h_l=h_s-h_{\scriptscriptstyle {f}}\), the governing equation for the liquid pressure is given by:

$$\begin{aligned}&\dot{h}_l - \nabla _{\mathbf {x}} \cdot \left( \tfrac{h_l^3}{12\mu }\nabla _{\mathbf {x}} p - h_l \tfrac{\mathbf {v}_{\mathbf {x}}^{\scriptscriptstyle {fI}} + \mathbf {v}_{\mathbf {x}}^{\scriptscriptstyle {sI}}}{2}\right) =0. \end{aligned}$$
(A.9)

Appendix B: Asymptotic solution of film displacements

Consider a thin isotropic elastic film (of uniform thickness \(h^{\scriptscriptstyle {0}}\)) which is bonded to a fixed rigid substrate and subjected to a normal pressure loading at its surface. An analytical solution for the elastic deformations of the film, has been obtained in literature [32] using perturbation theory. The perturbation analysis is presented here for the sake of completeness and further details can be found in [32]. Henceforth, the superscript f will be omitted from all the parameters and variables pertaining to the film for simplifying the notations in the forthcoming equations. The coordinate system \(\left( x_1,\, x_2,\, z\right)\) introduced earlier, is adopted, with origin O located at the base of the film as depicted in Fig. 1b, wherein \(\mathbf {x}\equiv \left( x_1,x_2\right)\) denotes the in-plane coordinates and z denotes the out-of-plane coordinate. Let \(q\left( \mathbf {x}\right)\) denote the normal loading on the film’s surface \((z=h^{\scriptscriptstyle {0}})\). It is assumed that \(q\left( \mathbf {x}\right)\) is an arbitrary smooth function defined on an arbitrary closed domain \(\mathcal {S}\) and diminishes at the boundary \(\partial \mathcal {S}\) such that \(q\left( \mathbf {x}\right) =0, \, \forall \, \mathbf {x}\in \partial \mathcal {S}.\) Let R denote the characteristic in-plane length of \(\mathcal {S}\) such that \(R \gg h^{\scriptscriptstyle {0}}\). Elastic deformations of the film \((\mathbf {u})\) are governed by the boundary value problem:

$$\begin{aligned}&\nabla \cdot \varvec{\sigma } = 0, \quad \varvec{\sigma } = G \left[ \nabla \mathbf {u}^{\scriptscriptstyle {T}} + \nabla \mathbf {u} \right] + \lambda \left( \nabla\cdot \mathbf {u}\right) \mathbf {I} \nonumber \\&\mathbf {u}= \mathbf {0} \text{ at } z=0, \quad \sigma _{13}= \sigma _{23}=0, \quad \sigma _{33} = -q\left( \mathbf {x}\right) \text{ at } z=h^{\scriptscriptstyle {0}} \end{aligned}$$
(B.10)

where \(\varvec{\sigma }\) denotes the elastic stress tensor given by Eq. 13, and \(\left( \lambda ,G\right)\) denote the Lamé parameters which can be expressed in terms of the Youngs modulus (E) and Poisson’s ratio \((\nu )\) as \(\lambda = \tfrac{E \nu }{\left( 1+\nu \right) \left( 1-2\nu \right) }\) and \(G=\tfrac{E}{2\left( 1+\nu \right) }\). The stress equilibrium equation Eq. B.10, can also be expressed in terms of the displacement variables \(\mathbf {u}=\left[ u_1 \equiv u_{x_1}, u_2\equiv u_{x_2}, u_{3}\equiv u_z\right]\) as:

$$\begin{aligned}&G \nabla ^{2}{u}_{i} + \left( \lambda + G \right) \tfrac{\partial }{\partial x_i}\left( \nabla\cdot\mathbf {u}\right) =0 , \quad i=1 \text{ to } 2 \end{aligned}$$
(B.11)
$$\begin{aligned}&G \nabla ^{2}u_{3}+ \left( \lambda + G \right) \tfrac{\partial }{\partial z}\left(\nabla\cdot \mathbf {u}\right) =0 . \end{aligned}$$
(B.12)

Non-dimensionalizing the coordinates and derivatives using:

$$\begin{aligned}&x_i= R \overline{x_1}, \quad z= h^{\scriptscriptstyle {0}} \overline{z}, \quad \frac{\partial \left( \cdot \right) }{\partial x_i} =\frac{1}{R} \overline{\partial }_{i}\left( \cdot \right) ,\nonumber \\&\frac{\partial }{\partial z}= \frac{1}{h^0} \overline{\partial }_{3}\left( \cdot \right) , \quad \frac{\partial ^2 \left( \cdot \right) }{\partial x_1^2} + \frac{\partial ^2 \left( \cdot \right) }{\partial x_2^2} = \frac{1}{R^2} \overline{\nabla _{{\mathbf {x}}}^{\scriptscriptstyle {2}}} \left( \cdot \right) , \end{aligned}$$
(B.13)

it can be shown that Eqs. B.11B.12 result in:

$$\begin{aligned}&G \left[ \overline{\partial }_{33}^2 u_{i} + \epsilon ^2 \overline{\nabla _{{\mathbf {x}}}^{\scriptscriptstyle {2}} u_{i}} \right] + a\epsilon \overline{\partial }_{i3}^2 u_{3} \nonumber \\&\quad \quad + a\epsilon ^2 \left( \overline{\partial }_{i1}^2 u_{1} + \overline{\partial }_{i2}^2 u_{2} \right) =0,\, \, i=1,\,2 \end{aligned}$$
(B.14)
$$\begin{aligned}&G \left[ \overline{\partial }_{33}^2 u_{3} + \epsilon ^2 \overline{\nabla _{{\mathbf {x}}}^{\scriptscriptstyle {2}} u_{3}} \right] + a \overline{\partial }_{33}^2 u_{3} \nonumber \\&\quad + a\epsilon \left( \overline{\partial }_{13}^2 u_{1} + \overline{\partial }_{23}^2 u_{2} \right) =0, \end{aligned}$$
(B.15)

where \(\epsilon =\frac{h^{\scriptscriptstyle {0}}}{R}\) and \(a=\left( \lambda + G \right) =\tfrac{E}{2\left( 1+\nu \right) \left( 1-2\nu \right) }\). Clearly \(\epsilon\) is a small non-dimensional parameter since \(R \gg h^{\scriptscriptstyle {0}}\). The unknown displacement field \(\mathbf {u}\) is represented using an asymptotic expansion (power series in terms of \(\epsilon\)):

$$\begin{aligned}&u_{j}\left( \overline{\mathbf {x}},\overline{z}\right) = \sum _{k=0}^{\infty } \epsilon ^k u_{j}^{(k)}\left( \overline{\mathbf {x}},\overline{z}\right) , \quad j=1 \text{ to } 3. \end{aligned}$$
(B.16)

where \(u_j^{(k)}\left( \overline{\mathbf {x}},\overline{z}\right)\) are unknown coefficients. These coefficients can be determined using perturbation analysis [32]. The solution procedure is briefly explained using a simple equation. Consider the fixed b.c. at \(z=0\), \(u_1\left( \mathbf {x},z=0\right) =0.\) Scaling the variables using Eq. B.13, \(u_1\left( \mathbf {x},z=0\right) =u_1\left( \overline{\mathbf {x}},\overline{z}=0\right)\). Next, substituting the asymptotic expansion into the equation it is evident that \(\sum _{k=0}^{\infty } \epsilon ^k u_{1}^{(k)}\left( \overline{\mathbf {x}},\overline{z}\right) =0\). This equation has to be satisfied for any arbitrary small value of \(\epsilon\), which implies that each of the coefficients have to be zero. Subsequently, the fixed b.c. at \(\overline{z}=0\) implies

$$\begin{aligned}&u_{j}^{(k)}\left( \overline{\mathbf {x}},0\right) = 0, \quad \forall \, j=1 \text{ to } 3 \text{ and } k\ge 0. \end{aligned}$$
(B.17)

It should be noted that the fixed b.c. on \(u_1\) translates to a b.c. on the individual coefficients. This procedure is repeated for the traction b.c. given in Eq. B.10 and each of the governing equations (Eqs. B.11B.12). Non-dimensionalizing the traction b.c.s at \(\overline{z}=1\):

$$\begin{aligned}&\sigma _{13}= \sigma _{23}=0 \Rightarrow \overline{\partial }_{3}u_i + \epsilon \overline{\partial }_{i}u_3 =0, \quad i=1,\,2. \end{aligned}$$
(B.18)
$$\begin{aligned}&\sigma _{33}=-p\left( \mathbf {x},t\right) \nonumber \\\quad &\Rightarrow \epsilon ^{-1} \overline{\partial }_{3}u_3+ \lambda \left( \overline{\partial }_{1}u_1 + \overline{\partial }_{2}u_2\right) = -q\left( \mathbf {x}\right) R. \end{aligned}$$
(B.19)

Substituting Eqs. B.16 in Eqs. B.18 and equating the coefficients of the resulting power series to zero:

$$\begin{aligned}&\epsilon ^0: \quad \left. \overline{\partial }_{3} \, u_{i}^{(0)} \right| _{\overline{z}=1} =0 , \quad \forall \, i=1,\,2 \text{ and }. \end{aligned}$$
(B.20)
$$\begin{aligned}&\epsilon ^k: \quad \left[ \overline{\partial }_{3} \, u_{i}^{(k)} + \overline{\partial }_{i} \, u_{3}^{(k-1)} \right] _{\overline{z}=1} =0 , \forall k \ge 1 \end{aligned}$$
(B.21)

Substituting Eqs. B.16 in Eq. B.19:

$$\begin{aligned}&\epsilon ^{-1}: \quad b \left. \overline{\partial }_{3} \, u_{3}^{(0)} \right| _{\overline{z}=1} =0 \end{aligned}$$
(B.22)
$$\begin{aligned}&\epsilon ^{0}: \quad b\, \left. \overline{\partial }_{3} \, u_{3}^{(1)}\right| _{\overline{z}=1} + \lambda \left. \left( \overline{\partial }_{1} \, u_{1}^{(0)} + \overline{\partial }_{2} \, u_{2}^{(0)}\right) \right| _{\overline{z}=1} \nonumber \\&\quad \quad \quad = -q\left( \mathbf {x}\right) R \end{aligned}$$
(B.23)
$$\begin{aligned}&\epsilon ^{k}: \, b\, \left. \overline{\partial }_{3} \, u_{3}^{(k+1)}\right| _{\overline{z}=1} + \lambda \left. \left( \overline{\partial }_{1} \, u_{1}^{(k)} + \overline{\partial }_{2} \, u_{2}^{(k)}\right) \right| _{\overline{z}=1}\nonumber \\&\quad \quad \quad =0 , \, \forall k \ge 2. \end{aligned}$$
(B.24)

A system of coupled partial differential equations (pde) governing the evolution of the coefficients can be obtained by substituting Eqs. B.16 in Eqs. B.14 - B.15. Using Eqs. B.16 in Eqs. B.14 :

$$\begin{aligned}&\epsilon ^0: G \, \overline{\partial }_{33}^2 u_{i}^{(0)}=0, \quad i=1,\, 2 \end{aligned}$$
(B.25)
$$\begin{aligned}&\epsilon ^1: G \, \overline{\partial }_{33}^2 u_{i}^{(1)} + a \, \overline{\partial }_{i3}^2 u_{3}^{(0)} =0, \quad i=1,\, 2 \end{aligned}$$
(B.26)
$$\begin{aligned}&\epsilon ^k: G \left( \overline{\partial }_{33}^2 u_{i}^{(k)} + \overline{\nabla _{\mathbf {x}}^2 u_i^{(k-2)}} \right) + a \sum _{j=1}^2\overline{\partial }_{ij}^2 u_{j}^{(k-2)} \nonumber \\&\quad +a\overline{\partial }_{i3}^2 u_{3}^{(k-1)} =0 , \quad \forall \, k\, \ge \,2 \end{aligned}$$
(B.27)

and substituting Eqs. B.16 in Eq. B.15:

$$\begin{aligned}&\epsilon ^0: \quad b \, \overline{\partial }_{33}^2 u_{3}^{(0)}=0 \end{aligned}$$
(B.28)
$$\begin{aligned}&\epsilon ^1: \quad b \, \overline{\partial }_{33}^2 u_{3}^{(1)} + a \left( \overline{\partial }_{13}^2 u_{1}^{(0)} + \overline{\partial }_{23}^2 u_{2}^{(0)} \right) =0 \end{aligned}$$
(B.29)
$$\begin{aligned}&\epsilon ^k:\, b \overline{\partial }_{33}^2 u_{3}^{(k)} + G \overline{\nabla _{\mathbf {x}}^2 u_3^{(k-2)}} + a\overline{\partial }_{13}^2 u_{1}^{(k-1)} \nonumber \\&\quad +a\overline{\partial }_{23}^2 u_{2}^{(k-1)} =0 , \quad \forall \, k\, \ge \, 2 \end{aligned}$$
(B.30)

where \(b=\left( \lambda + 2G \right) =\tfrac{E\left( 1-\nu \right) }{\left( 1+\nu \right) \left( 1-2\nu \right) }\). The system of equations given by Eqs. B.25B.30 and the set of boundary conditions in Eqs. B.17, B.20B.24 can be solved systematically to obtain the coefficients. Solving Eq. B.25 for b.c.’s given by Eqs. B.17 and B.20,

$$\begin{aligned}&u_{1}^{(0)}\left( \overline{\mathbf {x}},\overline{z}\right) =0&u_{2}^{(0)}\left( \overline{\mathbf {x}},\overline{z}\right) =0. \end{aligned}$$
(B.31)

Solving Eq. B.28 for the b.c.’s given by Eqs. B.17 and B.22

$$\begin{aligned}&u_{3}^{(0)}\left( \overline{\mathbf {x}},\overline{z}\right) =0. \end{aligned}$$
(B.32)

Substituting Eq. B.32 in Eq. B.26 and Eq. B.21 for \(k=1\), and using the b.c.’s given by Eq. B.23 and Eq. B.17:

$$\begin{aligned}&u_{1}^{(1)}\left( \overline{\mathbf {x}},\overline{z}\right) =0&u_{2}^{(1)}\left( \overline{\mathbf {x}},\overline{z}\right) =0. \end{aligned}$$
(B.33)

Using Eqs. B.31, B.23, B.29, it can be seen that \(u_3^{(1)}\left( \overline{\mathbf {x}},\overline{z}\right)\) is governed by

$$\begin{aligned}&\overline{\partial }_{33}^2 u_{3}^{(1)} =0, \quad \left. \overline{\partial }_{3} \, u_{3}^{(1)}\right| _{\overline{z}=1} = -q\left( \mathbf {x}\right) \frac{R}{b}, \quad u_{3}^{(1)}\left( \overline{\mathbf {x}},0\right) =0 \nonumber \\&\Rightarrow u_{3}^{(1)}\left( \overline{\mathbf {x}},\overline{z}\right) = -q\left( \mathbf {x}\right) \frac{R}{b} \overline{z} \end{aligned}$$
(B.34)

Using Eqs. B.31B.34 in Eq. B.27 (for \(k=2\)) and Eq. B.21 (for \(k=2\)), \(u_{i}^{(2)}\) for \(i=1, \, 2\) can be obtained as:

$$\begin{aligned}&G \,\overline{\partial }_{33}^2 u_{i}^{(2)} =- a \, \overline{\partial }_{i3}^2 u_{3}^{(1)}, \text{ subject } \text{ to } \nonumber \\&\left[ \overline{\partial }_{3} \, u_{i}^{(2)} + \overline{\partial }_{i} \, u_{3}^{(1)} \right] _{\overline{z}=1} =0, \, \, \left. u_{i}^{(2)}\right| _{\overline{z}=0}=0, \nonumber \\&\Rightarrow u_{i}^{(2)} \left( \overline{\mathbf {x}},\overline{z}\right) = \frac{ \overline{\partial }_{i}q\left( \mathbf {x}\right) R}{b\left( 1-2\nu \right) } \left( \frac{\overline{z}^2}{2} - {2\nu \, \overline{z}} \right) . \end{aligned}$$
(B.35)

Following this procedure, it can be shown that

$$\begin{aligned}&u_{i}^{(3)} \left( \overline{\mathbf {x}},\overline{z}\right) =0 ,\, \forall \, i=1,2, \quad u_{3}^{(2)}\left( \overline{\mathbf {x}},\overline{z}\right) = 0. \end{aligned}$$
(B.36)
$$\begin{aligned}&u_{3}^{(3)} \left( \overline{\mathbf {x}},\overline{z}\right) = -\frac{R}{b^2 \left( 1-2\nu \right) } \overline{\nabla _{\mathbf {x}}^2 q} \left( \frac{b}{6}\overline{z}^3 -{a\nu }\overline{z}^2 + {G\nu }\overline{z} \right) \end{aligned}$$
(B.37)

Hence, the displacement field can be obtained by by substituting the individual components Eqs. B.31B.37 in Eq. B.16 and rescaling the coordinates and derivatives. Finally, it can be shown that a third order asymptotic expansion of the displacement field is given by:

$$\begin{aligned}&\mathbf {u}_{\mathbf {x}}\left( \mathbf {x},z\right) = \frac{\nabla q\left( \mathbf {x}\right) }{b} \left( \frac{z^2}{2\left( 1-2\nu \right) } - \frac{2\nu \, h^{\scriptscriptstyle {0}} z}{1-2\nu } \right) \end{aligned}$$
(B.38)
$$\begin{aligned}&u_z\left( \mathbf {x},z\right) = - \frac{q\left( \mathbf {x}\right) }{b}z \nonumber \\&\quad -\frac{{\nabla _{\mathbf {x}}^2 q}}{b^2 \left( 1-2\nu \right) } \left( \frac{b}{6}z^3 -{a\nu \, h^{\scriptscriptstyle {0}} }z^2 + {G\nu \, \left( h^{\scriptscriptstyle {0}}\right) ^2 }z \right) \end{aligned}$$
(B.39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venketeswaran, A., Das, S. Effective and efficient characterization of lubrication flow over soft coatings. Meccanica 55, 1193–1213 (2020). https://doi.org/10.1007/s11012-020-01157-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01157-7

Keywords

Navigation