Skip to main content
Log in

Particle resolved CFD simulation on vapor-phase synthesis of vinyl acetate from ethylene in fixed-bed reactor

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The synthesis of vinyl acetate (VAc) from ethylene is a strongly exothermic reaction that might easily cause catalyst deactivation and reduce selectivity of VAc. Research at the bed scale helps to improve the conversion of C2H4 and the selectivity of VAc. In this study, the discrete element method (DEM) was used to construct a fixed-bed structure model via simulating the filling process of catalyst particles in the reactor. The inlet section of a reaction tube was studied, and its length was 10 cm. The temperature distribution, and the effects of particles size, inlet velocity, inlet temperature and the feed ratio of C2H4 to O2 on the reaction process were studied. Simulated results show that the bed temperature gradually increased from the wall to the center, and the temperature gradient gradually decreased along the radial direction. The maximum temperature was 438.68 K and the temperature difference from the inlet temperature was 5.54 K. Comparing the composite particle packed bed with the single particle size packed bed, the composite packed bed has higher vinyl acetate selectivity. Increasing inlet velocity from 1.5 m/s to 3.5 m/s, the selectivity of vinyl acetate increased from 91.71% to 92.60%. Adding an inert gas to the feed gas can increase the oxygen concentration and reduce the explosion interval of QH4, the conversion of C2H4 and the selectivity of vinyl acetate increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

∇:

divergence

Cg :

specific heat capacity of vapor phase [J·kg−1 ·K−1]

Cp :

specific heat capacity of fluid [J·kg−1 · K−1]

Cs :

specific heat capacity of solid phase [J·kg−1 · K−1]

dp :

particle diameter [m]

dt :

tube diameter [m]

C1ε C2ε C3e :

empirical constant

Di :

diffusion coefficient of component i [m2sd-s−1]

ECO2 :

the apparent activation energy of side reaction

EVAC :

the apparent activation energy of main reaction

F:

catalyst surface area [m2]

G b :

the turbulent kinetic energy generation term caused by buoyancy gives rise

G k :

the turbulent kinetic energy generation term caused by mean velocity gradient

ΔH:

standard enthalpy of formation [kJ·mor−1]

h:

the height of the bed [m]

hd :

the section increased in the lower stage of the tube

hg :

gas phase mass transfer coefficient [W/m−2·KT−1]

hs :

solid phase mass transfer coefficient [W/m−2·KT−1]

hu :

the section increased in the upper stage of the tube

Mi :

mass fraction of component i

N:

the tube-to-particle diameter ratio

p̄’:

the average void ratio

r1 :

reaction rate of main reaction [mol·g−1min−1]

r2 :

reaction rate of side reaction [mol·g−1min−1]

Rep :

particle Reynolds number

Sκ :

turbulent kinetic energy source items [J]

Sε>:

turbulent dissipation rate source term

T:

temperature [°C]

Tc :

the temperature of the volume near the wall [K]

Tg :

the temperature of vapor phase [K]

ūi :

mean velocity component of i direction [m-s−1]

u’i :

fluctuation velocity of i direction [m-s−1]

VAc:

vinyl acetate

wi :

molar mass of component [kg·mor−1]

yc :

the normal distance of the volume near the wall [m]

YM :

contribution of pulsating expansion in compressible turbulence

Κ :

turbulence kinetic energy [J]

ε :

turbulent dissipation rate

ρ :

density [kg·m−3]

ν:

velocity [m·s−1]

νin :

inlet velocity [m·s−1]

µ :

dynamic viscosity [Pa·s]

σε :

Prandtl number corresponding to the turbulent dissipation rate

σΚ :

Prandtl number corresponding to turbulent kinetic energy

References

  1. N. Panda and S. A. Yadav, Asian J. Chem., 8, 296 (2019).

    CAS  Google Scholar 

  2. H. F. Rase and M. Hayes, Platin Met. Rev., 45, 83 (2001).

    Google Scholar 

  3. S. Geng, M. U. Haque and K. Oksman, Compos. Sci. Technol, 126, 35 (2016).

    Article  CAS  Google Scholar 

  4. T. V. Panova, A. A. Efimova and A. V. Efimov, Colloid Polym. Sci, 7, 1 (2019).

    Google Scholar 

  5. A. R. G. Caranton, J. Dille, J. Barreto, F. Stavale, J. C. Pinto and M. Schmal, ChemCatChem, 10, 5256 (2018).

    Article  Google Scholar 

  6. Y. F. Han, J. H. Wang, D. Kumar, Z. Yan and D. W. Goodman, J. Catal, 232, 467 (2005).

    Article  CAS  Google Scholar 

  7. Y. F. Han, D. Kumar, C. Sivadinarayana and D. W. Goodman, J. Catal, 224, 60 (2004).

    Article  CAS  Google Scholar 

  8. X. Dong, Y. Wang, Y. Yu and M. H. Zhang, Ind. Eng. Chem. Res., 57, 7363 (2018).

    Article  CAS  Google Scholar 

  9. K. Motahari, H. Atashi, F. Fazloflahi and M. Sarkari, find Eng. Chem., 18, 266 (2012).

    CAS  Google Scholar 

  10. K. Motahari, G. Rempel, S. Lashkarara, K. Ghaseminezhad, A. Boramandnejad and B. Hatami, Can. J. Chem. Eng, 94, 506 (2016).

    Article  CAS  Google Scholar 

  11. D. Stacchiola, F. Calaza, M. Neurock and W. T. Tysoe, J. Am. Chem. Soc., 132, 2202 (2010).

    Article  Google Scholar 

  12. S. Nakamura and T. Yasui, J. Catal, 54, 605 (1982).

    Google Scholar 

  13. Q. L. Pham, Y. Haldorai and V. H. Nguyen, Korean J. Chem. Eng, 31, 2101 (2014).

    Article  CAS  Google Scholar 

  14. A. Talebian, A. R. Keshtkar and M. A. Mohammad, Korean J. Chem. Eng, 33, 2205 (2016).

    Article  CAS  Google Scholar 

  15. S. A. Jafari and A. Jamali, Korean J. Chem. Eng, 33, 1296 (2016).

    Article  CAS  Google Scholar 

  16. A. G. Dixon, M. Nijemeisland and E. H. Stitt, Adv. Chem. Eng, 31, 307 (2006).

    Article  CAS  Google Scholar 

  17. S. A. Logtenberg and A. G. Dixon, Chem. Eng. Process., 37, 7 (1998).

    Article  Google Scholar 

  18. P. X. Jiang, R. N. Xu and W. I. Gong, Chem. Eng. Sci., 61, 7213 (2006).

    Article  CAS  Google Scholar 

  19. A. Guardo, M. Coussirat, M. A. Larrayoz, F. Recasens and E. Egus-quiza, Chem. Eng. Sci, 60, 1733 (2005).

    Article  CAS  Google Scholar 

  20. P. R. Gunjal, V. V. Ranade and R. V. Chaudhari, AIChE J., 51, 365 (2005).

    Article  CAS  Google Scholar 

  21. H. Atashi, M. Sarkari, K. Motahari, F. F. Tabrizi and F. Fazlollahi, J. Korean Chem. Soc., 55, 92 (2011).

    Article  CAS  Google Scholar 

  22. K. Motahari, G. Rempel, S. Lashkarara, K. Ghaseminezhad, A. Borumandnejad and B. Hatami, Can. J. Chem. Eng, 94, 506 (2016).

    Article  CAS  Google Scholar 

  23. Y. F. Han, D. Kumar and D. W. Goodman, J. Catal., 230, 353 (2005).

    Article  CAS  Google Scholar 

  24. B. Partopour, AIChE J., 63, 87 (2017).

    Article  CAS  Google Scholar 

  25. B. Partopour and A. G. Dixon, Ind. Eng. Chem. Res., 55, 7296 (2016).

    Article  CAS  Google Scholar 

  26. D. Ying, F. J. Keil, O. Korup, F. Rosowski and R. Horn, Chem. Eng. Sci, 142, 299 (2016).

    Article  Google Scholar 

  27. R. Y. Hong, W. Yang, Y. Q. Zhuang and H. Z. Li, Comput. A. Chem., 23, 481 (2006).

    CAS  Google Scholar 

  28. P. Behnam and A. G. Dixon, AIChE J.63, 87 (2017).

    Article  Google Scholar 

  29. G. D. Wehinger, M. Kraume, V. Berg, O. Korup, K Metre, R. Schlogl, M. Behrens and R. Horn, AIChE J., 62, 4436 (2016).

    Article  CAS  Google Scholar 

  30. G. D. Wehinger, T. Eppinger and M. Kraume, Chem. Eng. Sci, 122, 197 (2015).

    Article  CAS  Google Scholar 

  31. K. Vollmari, T. Oschmann, S. Wirtz and H. K. Emden, Powder Technol, 271, 109 (2015).

    Article  CAS  Google Scholar 

  32. X. M. Zhou, Y.J. Duan, X. L. Huai and X. E. Li, Particuology, 11, 715 (2012).

    Article  Google Scholar 

  33. V. Mandar, S. T. Johansen and S. Amini, Ind. Eng. Chem. Res., 52, 12041 (2013).

    Article  Google Scholar 

  34. A. G. Dixon, Can. J. Chem. Eng, 66, 705 (1988).

    Article  CAS  Google Scholar 

  35. G. D. Wehinger, T. Eppinger and M. Kraume, Chem. Eng. Sci, 122, 197 (2015).

    Article  CAS  Google Scholar 

  36. A. G. Dixon, M. Nijemeisland and E. H. Stitt, Comput. Chem. Eng, 48, 135 (2013).

    Article  CAS  Google Scholar 

  37. S. H. Cheng, H. Chang and Y. H. Chen, Computational fluid dynamics-based multiobjective optimization for catalyst design, 21st International Symposium on Chemical Reaction Engineering, Philadelphia, PA, 13–16 July (2010).

    Book  Google Scholar 

  38. Z. X. Zhao, Q. L. Dai, S. D. Wang, B. Y. Lin and G. T. Chen, Chem. React. Eng. Technol, 2, 128 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongfeng Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, M., Cao, X. et al. Particle resolved CFD simulation on vapor-phase synthesis of vinyl acetate from ethylene in fixed-bed reactor. Korean J. Chem. Eng. 37, 839–849 (2020). https://doi.org/10.1007/s11814-020-0500-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0500-y

Keywords

Navigation