Skip to main content
Log in

Synthesis of hollow magnetic carbon microbeads using iron oleate@alginate core-shell hydrogels and their application to magnetic separation of organic dye

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The use of biopolymers obtained from natural resources as a carbon source has attracted much attention. In this study, we introduced a novel method for synthesis of hollow magnetic carbon microbeads (HMCMs) based on core-shell alginate hydrogel microbeads consisting of a hydrophobic iron-oleate core encapsulated in a shell of ionically cross-linked alginate hydrogel using the syringe pump with the fabricated double-layered syringe needle. This allows in-situ formation of magnetic particles and carbon walls simultaneously during carbonization. After surface passivation with a silica coating followed by direct carbonization led to in-situ formation of iron oxide particles via the thermal decomposition of the iron-oleate precursor in the core region and a carbon shell derived from the cross-linked alginate polymer during carbonization. The subsequent removal of the silica shell resulted in the formation of HMCMs with a unique surface wrinkle morphology and superparamagnetic property. HMCMs were applied to remove dye from the contaminated wastewater, and the dye-adsorbed HMCMs could be easily removed by an external magnetic field. The proposed synthesis of hollow carbon microbeads can be further optimized to control the size of core-shell microbeads and the components encapsulated in the core and shell, and hence will be useful for preparing diverse types of beads for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Arami, N.Y. Limaee, N.M. Mahmoodi and N. S. Tabrizi, J. Colloid Interface Sci., 288, 371 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. T. Robinson, B. Chandran and P. Nigam, Water Res., 36, 2824 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. M. Mohammadi, A. J. Hassani, A.R. Mohamed and G.D. Najafpour, J. Chem. Eng. Data, 55, 5777 (2010).

    Article  CAS  Google Scholar 

  4. H. Liu, X. Ren and L. Chen, J. Ind. Eng. Chem., 34, 278 (2016).

    Article  CAS  Google Scholar 

  5. M. T. Yagub, T.K. Sen, S. Afroze and H.M. Ang, Adv. Colloid Interface Sci., 209, 172 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. T. Robinson, G. McMullan, R. Marchant and P. Nigam, Bioresour. Technol., 77, 247 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. G. Crini, Bioresour. Technol., 97, 1061 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. T. A. Saleh and I. Ali, J. Environ. Chem. Eng., 6, 5361 (2018).

    Article  CAS  Google Scholar 

  9. V. Katheresan, J. Kansedo and S.Y. Lau, J. Environ. Chem. Eng., 6, 4676 (2018).

    Article  CAS  Google Scholar 

  10. G. San Miguel, S.D. Lambert and N. J.D. Graham, J. Chem. Technol. Biotechnol., 81, 1685 (2006).

    Article  CAS  Google Scholar 

  11. H. Kim, M. E. Fortunato, H. Xu, J. H. Bang and K. S. Suslick, J. Phys. Chem. C, 115, 20481 (2011).

    Article  CAS  Google Scholar 

  12. Y. Wang, L. Zhang, Y. Wu, Y. Zhong, Y. Hu and X.W. Lou, Chem. Commun., 51, 6921 (2015).

    Article  CAS  Google Scholar 

  13. S. Olivera, K. Venkatesh, N. Reddy, B.K. Jayanna, Inamuddin, A. M. Asiri, S. Rtimi and H. B. Muralidhara, Environ. Technol. Innovation, 12, 160 (2018).

    Article  Google Scholar 

  14. J. Galán, A. Rodríguez, J. M. Gómez, S. J. Allen and G. M. Walker, Chem. Eng. J., 219, 62 (2013).

    Article  CAS  Google Scholar 

  15. L. Tosheva, J. Parmentier, V. Valtchev, C. Vix-Guterl and J. Patarin, Carbon, 43, 2474 (2005).

    Article  CAS  Google Scholar 

  16. J. Liu, T. Yang, D.-W. Wang, G.Q. Lu, D. Zhao and S. Z. Qiao, Nat. Commun., 4, 2798 (2013).

    Article  CAS  Google Scholar 

  17. M. Li, Q. Wu, M. Wen and J. Shi, Nanoscale Res. Lett., 4, 1365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. X. Wang, C. Jiang, B. Hou, Y. Wang, C. Hao and J. Wu, Chemosphere, 206, 587 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. L. Ding and S.V. Olesik, Chem. Mater., 17, 2353 (2005).

    Article  CAS  Google Scholar 

  20. F. Lu, C. Huang, L. You, J. Wang and Q. Zhang, RSC Adv., 7, 23255 (2017).

    Article  CAS  Google Scholar 

  21. H.-S. Qian, F.-M. Han, B. Zhang, Y.-C. Guo, J. Yue and B.-X. Peng, Carbon, 42, 761 (2004).

    Article  CAS  Google Scholar 

  22. T. Zhang, C. Zhu, Y. Shi, Y. Li, S. Zhu and D. Zhang, Mater. Lett., 205, 10 (2017).

    Article  CAS  Google Scholar 

  23. M. S. Shoichet, R. H. Li, M. L. White and S.R. Winn, Biotechnol. Bioeng., 50, 374 (1995).

    Article  Google Scholar 

  24. Ý.A. Mørch, I. Donati and B. L. Strand, Biomacromolecules, 7, 1471 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. B. P. Barnett, A. Arepally, M. Stuber, D.R. Arifin, D. L. Kraitchman and J.W. M. Bulte, Nat. Protocols, 6, 1142 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. J. Kim, D.R. Arifin, N. Muja, T. Kim, A.A. Gilad, H. Kim, A. Arepally, T. Hyeon and J.W. M. Bulte, Angew. Chem. Int. Ed., 50, 2317 (2011).

    Article  CAS  Google Scholar 

  27. B.Y. Shin, B.G. Cha, J.H. Jeong and J. Kim, ACS Appl. Mater. Interfaces, 9, 31372 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. X. Yang, Z. Lu, H. Wu, W. Li, L. Zheng and J. Zhao, Mater. Sci. Eng.: C, 83, 195 (2018).

    Article  CAS  Google Scholar 

  29. E. Raymundo-Piñero, F. Leroux and F. Béguin, Adv. Mater., 18, 1877 (2006).

    Article  CAS  Google Scholar 

  30. Z. Lei, S. Zhai, J. Lv, Y. Fan, Q. An and Z. Xiao, RSC Adv., 5, 77932 (2015).

    Article  CAS  Google Scholar 

  31. K. Cho, B.Y. Shin, H. K. Park, B. G. Cha and J. Kim, RSC Adv., 4, 21777 (2014).

    Article  CAS  Google Scholar 

  32. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang and T. Hyeon, Nat. Mater., 3, 891 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. K.-S. Huang, C.-H. Yang, Y.-S. Lin, C.-Y. Wang, K. Lu, Y.-F. Chang and Y.-L. Wang, Drug Deliv. and Transl. Res., 1, 289 (2011).

    Article  CAS  Google Scholar 

  34. F. Guerretta, G. Magnacca, F. Franzoso, P. Ivanchenko and R. Nisticò, Mater. Lett., 234, 339 (2019).

    Article  CAS  Google Scholar 

  35. A. B. Ross, C. Hall, K. Anastasakis, A. Westwood, J. M. Jones and R. J. Crewe, J. Anal. Appl. Pyrol., 91, 344 (2011).

    Article  CAS  Google Scholar 

  36. D. Li, L. Chen, X. Yi, X. Zhang and N. Ye, Bioresour. Technol., 101, 7131 (2010).

    Article  CAS  Google Scholar 

  37. J. P. Soares, J. E. Santos, G.O. Chierice and E.T. G. Cavalheiro, Eclética Química, 29, 57 (2004).

    Article  CAS  Google Scholar 

  38. U. Holzwarth and N. Gibson, Nat. Nanotechnol., 6, 534 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. K.G. Bhattacharyya, S. Sengupta and G.K. Sarma, Appl. Clay Sci., 99, 7 (2014).

    Article  CAS  Google Scholar 

  40. A.A. Inyinbor, F. A. Adekola and G.A. Olatunji, S. Afr. J. Chem., 69, 218 (2016).

    Article  CAS  Google Scholar 

  41. S. Chaudhary, P. Sharma, Renu and R. Kumar, RSC Adv., 6, 62797 (2016).

    Article  CAS  Google Scholar 

  42. S.K. Giri, N.N. Das and G. C. Pradhan, Colloids Surf. A: Physicochem. Eng. Aspects, 389, 43 (2011).

    Article  CAS  Google Scholar 

  43. A. Sinha, B. G. Cha and J. Kim, ACS Appl. Nano Mater., 1, 1940 (2018).

    Article  CAS  Google Scholar 

  44. M. Santhi and P. E. Kumar, Int. J. Innov. Res. Sci. Eng. Technol., 4, 497 (2015).

    Article  Google Scholar 

  45. X. Pan, Q. Du, Y. Zhou, L. Liu, G. Xu and C. Yan, J. Nanosci. Nanotechnol., 18, 7231 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Republic of Korea (2010-0027955, 2019R1A2C2004765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeyun Kim.

Supporting Information

11814_2020_482_MOESM1_ESM.pdf

Synthesis of hollow magnetic carbon microbeads using iron oleate@alginate core-shell hydrogels and their application to magnetic separation of organic dye

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, S.Y., Lee, J.Y. & Kim, J. Synthesis of hollow magnetic carbon microbeads using iron oleate@alginate core-shell hydrogels and their application to magnetic separation of organic dye. Korean J. Chem. Eng. 37, 875–882 (2020). https://doi.org/10.1007/s11814-020-0482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0482-9

Keywords

Navigation