Skip to main content
Log in

Improved impact strength of poly(lactic acid) by incorporating poly(butylene succinate) and silicon dioxide nanoparticles

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The surface of silicon dioxide (SiO2) nanoparticles was treated with oleic acid, and the resulting surface properties were characterized. Bio-based poly(lactic acid) (PLA)/poly(butylene succinate)/SiO2 nanocomposites were fabricated via solution blending. The influence of the SiO2 content on the thermal stability, flexural properties, impact strength, and morphology of the prepared nanocomposites was investigated using several techniques. The impact strength of the nanocomposites with surface treated SiO2 (O-SiO2) nanoparticles substantially increased with increasing O-SiO2 content from 0 to 3 wt%. Scanning electron microscopy imaging revealed that the nanocomposites with O-SiO2 nanoparticles exhibited numerous tortuous cracks and ridges, indicating ductile deformation prior to fracturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. L. Jin, R. R. Hu and S. J. Park, Compos. Part B, 164, 287 (2019).

    Article  CAS  Google Scholar 

  2. N. Wu, J. Yu, W. Lang, X. Ma and Y. Yang, Polymers, 11(7), 1129 (2019).

    Article  Google Scholar 

  3. J. Andrzejewski, M. Szostak, M. Barczewski and P. Łuczak, Compos. Part B, 163, 655 (2019).

    Article  CAS  Google Scholar 

  4. S.W. Kim and H. M. Choi, Korean J. Chem. Eng., 33(1), 330 (2016).

    Article  CAS  Google Scholar 

  5. S. Liu, G. Wu, X. Chen, X. Zhang, J. Yu, M. Liu, Y. Zhang and P. Wang, Polymers, 11(6), 1015 (2019).

    Article  CAS  Google Scholar 

  6. M. K. Lila, K. Shukla, U. K. Komal and I. Singh, Compos. Part B, 156, 121 (2019).

    Article  CAS  Google Scholar 

  7. Y. Zhao, Y. Zhang, Z. Li, H. Pan, Q. Dong, L. Han, H. Zhang and L. Dong, Korean J. Chem. Eng., 33(3), 1104 (2016).

    Article  CAS  Google Scholar 

  8. C. Vasile, E. Stoleru, R. N. Darie-Niţa, R. P. Dumitriu, D. Pamfil and L. Tarţau, Polymers, 11(6), 941 (2019).

    Article  CAS  Google Scholar 

  9. J. Li, W. J. Peng, Z. J. Fu, X. H. Tang, H. Wu, S. Guo and M. Wang, Compos. Part B, 171, 204 (2019).

    Article  CAS  Google Scholar 

  10. A. Lopera-Valle, J.V. Caputo, R. Leao, D. Sauvageau, S. M. Luz and A. Elias, Polymers, 11(6), 933 (2019).

    Article  Google Scholar 

  11. A. Djukić-Vuković, D. Mladenović, J. Ivanović, J. Pejin and L. Mojović, Renew. Sust. Energy Rev., 108, 238 (2019).

    Article  Google Scholar 

  12. A. L. Hou and J. P. Qu, Polymers, 11(5), 771 (2019).

    Article  CAS  Google Scholar 

  13. M. Perić, R. Putz and C. Paulik, Eur. Polym. J., 114, 426 (2019).

    Article  Google Scholar 

  14. B. Dillon, P. Doran, E. Fuenmayor, A. V. Healy, N. M. Gately, I. Major and J. G. Lyons, Polymers, 11(4), 710 (2019).

    Article  CAS  Google Scholar 

  15. M. Nofar, D. Sacligil, P. J. Carreau, M.R. Kamal and M. C. Heuze, Int. J. Biol. Macromol., 125, 307 (2019).

    Article  CAS  Google Scholar 

  16. A. F. Ahmad, S.A. Aziz, Z. Abbas, S.J. Obaiys, K. A. Matori, M.H.M. Zaid, H. K. Raad and U. S. Aliyu, Polymers, 11(4), 661 (2019).

    Article  Google Scholar 

  17. J. Sun, L. Li and J. Li, Chem. Eng. J., 369, 150 (2019).

    Article  CAS  Google Scholar 

  18. R. Liu, X. Yin, A. Huang, C. Wang and E. Ma, Polymers, 11(2), 204 (2019).

    Article  Google Scholar 

  19. T. M. Don, T.S. Li and W. C. Lai, Polym. Degrad. Stab., 162, 55 (2019).

    Article  CAS  Google Scholar 

  20. M. J. Kang, F. L. Jin and S. J. Park, Macromol. Res., 26(11), 1048 (2018).

    Article  CAS  Google Scholar 

  21. L. Tan, Y. He and J. Qu, Polymer, 180, 121656 (2019).

    Article  CAS  Google Scholar 

  22. W. Wu, C. Wu, H. Peng, Q. Sun, L. Zhou, J. Zhuang, X. Cao, V. A. L. Roy and R. K. Y. Li, Compos. Part B, 113, 300 (2017).

    Article  CAS  Google Scholar 

  23. S. J. Park and B. J. Kim, Mater. Sci. Eng. A, 408(1–2), 269 (2005).

    Article  Google Scholar 

  24. I. Jang, K. H. Shin, I. Yang, H. Kim, J. Kim, W. H. Kim, S.W. Jeon and J. P. Kim, Colloids Surf. A, 18, 64 (2017).

    Article  Google Scholar 

  25. F. L. Jin, H. Zhang, S. S. Yao and S. J. Park, Macromol. Res., 26(3), 211 (2018).

    Article  CAS  Google Scholar 

  26. C. Pan, K. Kou, Q. Jia, Y. Zhang, G. Wu and T. Ji, Compos. Part B, 111, 83 (2017).

    Article  CAS  Google Scholar 

  27. F. L. Jin, C. J. Ma and S. J. Park, Mater. Sci. Eng. A, 528(29–30), 8517 (2011).

    Article  CAS  Google Scholar 

  28. F. L. Jin and S. J. Park, Polym. Degrad. Stab., 97(11), 2148 (2012).

    Article  CAS  Google Scholar 

  29. F. L. Jin and S. J. Park, Mater. Sci. Eng. A, 475(1–2), 190 (2008).

    Article  Google Scholar 

  30. S.S. Yao, Q. Q. Pang, R. Song, F.L. Jin and S. J. Park, Macromol. Res., 24(11), 961 (2016).

    Article  CAS  Google Scholar 

  31. F. L. Jin, Q. Q. Pang, T.Y. Zhang and S. J. Park, J. Ind. Eng. Chem., 32, 77 (2015).

    Article  CAS  Google Scholar 

  32. J.H. Wu, M. S. Yen, M. C. Kuo and B. H. Chen, Mater. Chem. Phys., 142(2–3), 726 (2013).

    Article  CAS  Google Scholar 

  33. F. L. Jin and S. J. Park, Polym. Degrad. Stab., 92(3), 509 (2007).

    Article  CAS  Google Scholar 

  34. M. Foruzanmehr, P.Y. Vuillaume, S. Elkoun and M. Robert, Mater. Des., 106, 295 (2016).

    Article  CAS  Google Scholar 

  35. Z. Li, J.K. Muiruri, W. Thitsartarn, X. Zhang, B. H. Tan and C. He, Compos. Sci. Technol., 159, 11 (2018).

    Article  CAS  Google Scholar 

  36. J.B. Zhang, H. Zhang, F. L. Jin and S. J. Park, B. Mater. Sci., 43, 6 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program (10083586, Development of petroleum based graphite fibers with ultra-high thermal conductivity) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and the Technological Innovation R&D Program (S2829590) funded by the Small and Medium Business Administration (SMBA, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan-Long Jin or Soo-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, FL., Hu, RR. & Park, SJ. Improved impact strength of poly(lactic acid) by incorporating poly(butylene succinate) and silicon dioxide nanoparticles. Korean J. Chem. Eng. 37, 905–910 (2020). https://doi.org/10.1007/s11814-020-0488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0488-3

Keywords

Navigation