Skip to main content
Log in

Empirical orthogonal function analysis and modeling of global ionospheric spherical harmonic coefficients

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

We developed a global empirical model for computing spherical harmonic (SH) coefficients based on the empirical orthogonal function (EOF) method and periodic functions by utilizing global ionospheric SH coefficients data provided by Center for Orbit Determination in Europe (CODE) during the years 2005–2016. Results show that the first four-order base functions and corresponding associated coefficients can represent 97.15% of the basic characteristics of the original data. The first four-order associated coefficients have noticeable periodic variations, and the correlation between these coefficients and the solar activity intensity is high. By fitting the associated coefficients with the periodic function that takes into account the influence of solar activity, it is possible to establish an EOF model to characterize the variations of the ionospheric SH coefficients with few model parameters and further calculate the global vertical total electron content (VTEC). Relative to the existing global VTEC EOF models, this EOF method can achieve high-accuracy modeling of global VTEC with a smaller number of model coefficients. By comparing the SH coefficients and the global VTEC between the EOF model and CODE, results demonstrate that the EOF model can achieve high accuracy and reliability under different solar activities. The difference between the EOF model and CODE is basically at the same level as that between the individual ionospheric analysis centers and CODE. In the extreme event of magnetic storms, the EOF model can also present higher accuracy than the international reference ionosphere (IRI) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The final GIMs products corresponding to different IAACs are collected by the Chinese Academy of Sciences and can available via the FTP server: ftp://ftp.gipp.org.cn/product/ionex/. The Dst, AE, and Kp indexes are available via NASA Goddard Space Flight Center (https://omniweb.gsfc.nasa.gov/form/dx1.html).

References

  • Andima G, Amabayo EB, Jurua E, Pierre JC (2019) Modeling of GPS total electron content over the African low-latitude region using empirical orthogonal functions. Ann Geophys 37(1):65–76

    Article  Google Scholar 

  • Bent RB, Llewllyn SK (1973) Documentation and description of the Bent ionospheric model. SAMSO technical, report, 73–252

  • Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X (2017) International reference ionosphere 2016: from ionospheric climate to real-time weather predictions. Sp Weather 15(2):418–429

    Article  Google Scholar 

  • Chen Z, Zhang SR, Coster AJ, Fang G (2015) EOF analysis and modeling of GPS TEC climatology over North America. J Geophys Res 120(4):3118–3129

    Article  Google Scholar 

  • Dabbakuti JR, Venkata RD (2017) Modeling and analysis of GPS-TEC low latitude climatology during the 24th solar cycle using empirical orthogonal functions. Adv Sp Res 60(8):1751–1764

    Article  Google Scholar 

  • Davis R (1976) Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J Phys Oceanogr 6(3):249–266

    Article  Google Scholar 

  • Ding C, Chen C (2011) Preliminary analysis of the ionospheric dispersion effect on linear polarization radar signal. Chin J Radio Sci 26(1):30–34

    Google Scholar 

  • Dvinskikh NI (1988) Expansion of ionospheric characteristics fields in empirical orthogonal functions. Adv Sp Res 8(4):179–187

    Article  Google Scholar 

  • Ercha A, Zhang D, Xiao Z, Hao YQ, Ridley AJ, Moldwin M (2011) Modeling ionospheric foF2 by using empirical orthogonal function analysis. Ann Geophys 29(8):1501–1515

    Article  Google Scholar 

  • Ercha A, Zhang D, Ridley AJ, Xiao Z, Hao Y (2012) A global model: empirical orthogonal function analysis of total electron content 1999–2009 data. J Geophys Res 117(A3):3328–3345

    Google Scholar 

  • Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: A review. Int J Climatol 27(9):1119–1152

    Article  Google Scholar 

  • Habarulema JB, Mckinnell LA, Opperman BDL (2010) TEC measurements and modelling over southern Africa during magnetic storms; a comparative analysis. J Atmos Sol Terr Phys 72(5–6):509–520

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Sol Terr Phys 61(16):1237–1247

    Article  Google Scholar 

  • Hernández-Pajares M, Roma-Dollase D, Krankowski A, García-Rigo A, Orus-Pérez R (2017) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geod 91(12):1405–1414

    Article  Google Scholar 

  • Hood LL, Zhou S (1998) Stratospheric effects of 27-day solar ultraviolet variations: an analysis of UARS MLS ozone and temperature data. J Geophys Res 103(D3):3629–3638

    Article  Google Scholar 

  • Klobuchar J (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst 23(3):325–331

    Article  Google Scholar 

  • Le H, Yang N, Liu L, Chen Y, Zhang H (2017) The latitudinal structure of nighttime ionospheric TEC and its empirical orthogonal functions model over North American sector. J Geophys Res 122(1):963–977

    Article  Google Scholar 

  • Li Z, Wang N, Li M, Zhou K, Yuan Y (2017) Evaluation and analysis of the global ionospheric TEC map in the frame of International GNSS Services. Chin J Geophys 60(10):3718–3729

    Google Scholar 

  • Lin J, Yue X, Zeng Z, Lou Y, Shen X, Wu Y, Schreiner WS, Kuo YH (2014) Empirical orthogonal function analysis and modeling of the ionospheric peak height during the years 2002–2011. J Geophys Res 119(5):3915–3929

    Article  Google Scholar 

  • Liu C, Zhang M, Wan W, Liu L, Ning B (2008) Modeling M (3000) F2 based on empirical orthogonal function analysis method. Radio Sci 43(1):1–8

    Article  Google Scholar 

  • Lorenz E (1956) Empirical orthogonal functions and statistical weather prediction. Sci Rep 1, Contract AF19(604)1566, AFCRC-TN-57-256, Dep of Meteorol, Mass. Inst of Technol, Cambridge

  • Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582

    Article  Google Scholar 

  • Mao T, Wan W, Liu L (2005) An EOF-based empirical model of TEC over Wuhan. Chin J Geophys 48(4):751–758

    Article  Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2(11):559–572

    Article  Google Scholar 

  • Rawer K, Bilitza D, Ramakrishnan S (1978) Goals and status of the International Reference Ionosphere. Rev Geophys 16(2):177–181

    Article  Google Scholar 

  • Rhoden EA, Forbes JM, Marcos FA (2000) The influence of geomagnetic and solar variabilities on lower thermosphere density. J Atmos Sol Terr Phys 62(11):999–1013

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the earth's ionosphere using the Global Positioning System. Doctoral dissertation, Univ. Bern, Switzerland

  • Uwamahoro JC, Habarulema JB (2015) Modelling total electron content during geomagnetic storm conditions using empirical orthogonal functions and neural networks. J Geophys Res 120(12):11000–11012

    Article  Google Scholar 

  • Viereck R, Puga L, Mcmullin D, Judge D, Weber M, Tobiska WK (2001) The MgII index: a proxy for solar EUV. Geophys Res Lett 28(7):1343–1346

    Article  Google Scholar 

  • Yao X, Zhao B, Liu L, Wan W (2015) Comparison of ionospheric electron content over North America and East Asia with EOF analysis. Chin J Space Sci 35(5):556–565

    Google Scholar 

  • Zhang M, Liu C, Wan W, Liu L, Ning B (2009) A global model of the ionospheric F2 peak height based on EOF analysis. Ann Geophys 27(8):3203–3212

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the IGS Ionosphere Associate Analysis Centers (IAACs), including the Center for Orbit Determination in Europe (CODE), the European Space Operations Center of European Space Agency (ESA), the Jet Propulsion Laboratory (JPL), and the Universitat Politècnica de Catalunya (UPC) for providing the data. We also gratefully acknowledged the use of Generic Mapping Tool (GMT) and MATrix LABoratory (MATLAB) software. This study was funded by the National Natural Science Foundation of China (41404031) and Outstanding Youth Science Fund of Xi’an University of Science and Technology (2018YQ2-10). The CSC scholarship also supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Liu, H. & Ma, Y. Empirical orthogonal function analysis and modeling of global ionospheric spherical harmonic coefficients. GPS Solut 24, 71 (2020). https://doi.org/10.1007/s10291-020-00984-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-020-00984-1

Keywords

Navigation