Skip to main content
Log in

Sliding Mode Control for a Generalization of the Caginalp Phase-Field System

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In the present paper, we present and solve the sliding mode control (SMC) problem for a second-order generalization of the Caginalp phase-field system. This generalization, inspired by the theories developed by Green and Naghdi on one side, and Podio-Guidugli on the other, deals with the concept of thermal displacement, i.e., a primitive with respect to the time of the temperature. Two control laws are considered: the former forces the solution to reach a sliding manifold described by a linear constraint between the temperature and the phase variable; the latter forces the phase variable to reach a prescribed distribution \(\varphi ^*\). We prove existence, uniqueness as well as continuous dependence of the solutions for both problems; two regularity results are also given. We also prove that, under suitable conditions, the solutions reach the sliding manifold within finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Please note that in this paper we will use both the notations \(p_t\) and \(\partial _tp\) to denote the derivative of a function p.

References

  1. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics, Springer, New York (2010)

    Book  Google Scholar 

  2. Barbu, V., Colli, P., Gilardi, G., Marinoschi, G., Rocca, E.: Sliding mode control for a nonlinear phase-field system. SIAM J. Control Optim. 55, 2108–2133 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bartolini, G., Fridman, L., Pisano, A., Usai, E. (eds.): Modern Sliding Mode Control Theory New Perspectives and Applications, Lecture Notes in Control and Inform. Sci. 375, Springer, Berlin (2008)

  4. Bonetti, E., Rocca, E.: Unified gradient flow structure of phase field systems via a generalized principle of virtual powers. ESAIM Control Optim. Calc. Var. 23, 1201–1216 (2017)

    Article  MathSciNet  Google Scholar 

  5. Brézis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  6. Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    Book  Google Scholar 

  7. Caginalp, G.: An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Anal. 92, 205–245 (1986)

    Article  MathSciNet  Google Scholar 

  8. Canevari, G., Colli, P.: Solvability and asymptotic analysis of a generalization of the Caginalp phase field system. Commun. Pure Appl. Anal. 11, 1959–1982 (2012)

    Article  MathSciNet  Google Scholar 

  9. Canevari, G., Colli, P.: Convergence properties for a generalization of the Caginalp phase field system. Asymptot. Anal. 82, 139–162 (2013)

    Article  MathSciNet  Google Scholar 

  10. Cheng, M.-B., Radisavljevic, V., Su, W.-C.: Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties. Automatica J. IFAC 47, 381–387 (2011)

    Article  MathSciNet  Google Scholar 

  11. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence, Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser Boston Inc, Boston (1993)

    Google Scholar 

  12. Edwards, C., Colet, E.F., Fridman, L. (eds.): Advances in Variable Structure and Sliding Mode Control, Lecture Notes in Control and Inform. Sci. 334, Springer, Berlin (2006)

  13. Evans, L.C.: Partial Differential Equations, Grad. Stud. Math. American Mathematical Society, Providence (1998)

    Google Scholar 

  14. Fridman, L., Moreno, J., Iriarte, R. (eds.): Sliding Modes after the First Decade of the 21st Century: State of the Art, Lecture Notes in Control and Inform. Sci. 412, Springer, Berlin (2011)

  15. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. Ser. A 432, 171–194 (1991)

    Article  MathSciNet  Google Scholar 

  16. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Thermal Stresses 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  17. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  18. Levaggi, L.: Infinite dimensional systems’ sliding motions. Eur. J. Control 8, 508–516 (2002)

    Article  Google Scholar 

  19. Levaggi, L.: Existence of sliding motions for nonlinear evolution equations in Banach spaces. Discret. Contin. Dyn. Syst. 8, 477–487 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Lions, J.-L.: Équations différentielles opérationnelles et problèmes aux limites, Die Grundlehren der mathematischen Wissenschaften, vol. 111. Springer, Berlin (1961)

    Google Scholar 

  21. Miranville, A., Quintanilla, R.: A Caginalp phase-field system with a nonlinear coupling. Nonlinear Anal. Real World Appl. 11, 2849–2861 (2010)

    Article  MathSciNet  Google Scholar 

  22. Orlov, Y., Utkin, V.I.: Unit sliding mode control in infinite dimensional systems. Appl. Math. Comput. Sci. 8(1), 7–20 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Orlov, Y.V.: Discontinuous unit feedback control of uncertain infinite-dimensional systems. IEEE Trans. Autom. Control 45, 834–843 (2000)

    Article  MathSciNet  Google Scholar 

  24. Orlov, Y.V., Utkin, V.I.: Use of sliding modes in distributed system control problems. Autom. Remote Control 43, 1127–1135 (1983)

    MathSciNet  MATH  Google Scholar 

  25. Orlov, Y.V., Utkin, V.I.: Sliding mode control in indefinite-dimensional systems. Autom. J. IFAC 23, 753–757 (1987)

    Article  MathSciNet  Google Scholar 

  26. Podio-Guidugli, P.: A virtual power format for thermomechanics. Contin. Mech. Thermodyn. 20, 479–487 (2009)

    Article  MathSciNet  Google Scholar 

  27. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  28. Simon, J.: Compact sets in the space \(L^p(0,T;B)\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  Google Scholar 

  29. Utkin, V.I.: Sliding Modes in Control and Optimization. Comm. Control Engrg. Ser. Springer, Berlin (1992)

    Google Scholar 

  30. Xing, H., Li, D., Gao, C., Kao, Y.: Delay-independent sliding mode control for a class of quasi-linear parabolic distributed parameter systems with time-varying delay. J. Franklin Inst. 350, 397–418 (2013)

    Article  MathSciNet  Google Scholar 

  31. Young, K.D., Özgüner, U. (eds.): Variable Structure Systems, Sliding Mode and Nonlinear Control, Lecture Notes in Control and Inform. Sci. 247, Springer, London (1999)

Download references

Acknowledgements

The current contribution originated from the work done by Davide Manini for the preparation of his master thesis, which has been discussed at the University of Pavia on July 2019. Actually, the paper turns out to offer some extension to the results there contained. The research of Pierluigi Colli is supported by the Italian Ministry of Education, University and Research (MIUR): Dipartimenti di Eccellenza Program (2018–2022)—Dept. of Mathematics “F. Casorati”, University of Pavia. In addition, PC gratefully acknowledges some other support from the GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica) and the IMATI–C.N.R. Pavia, Italy. Last but not least, the authors are very grateful to the referees for their careful work and for a number of suggestions that led to an improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Manini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colli, P., Manini, D. Sliding Mode Control for a Generalization of the Caginalp Phase-Field System. Appl Math Optim 84, 1395–1433 (2021). https://doi.org/10.1007/s00245-020-09682-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09682-3

Keywords

Mathematics Subject Classification

Navigation