Skip to main content
Log in

Enhancement of THz Generation by Two-Color TW Laser Pulses in a Low-Pressure Gas

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We identify experimental conditions for efficient generation of THz pulses by high power near IR laser radiation: 2 TW, 30 fs, 800-nm laser pulses with their second harmonic were slightly focused in a low-pressure gas cell in such a way to avoid multiple filamentation and excessive ionization. This two-color scheme yields a microjoule level of THz pulses which is two orders of magnitude higher than the signal generated in the atmosphere of ambient air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.-J. Yoo, D. Kuk, Z. Zhong, and K.-Y. Kim, “Generation and characterization of strong terahertz fields from kHz laser filamentation,” IEEE J. Sel. Top. Quantum Electron., vol. 23, no. 4, pp. 1–7, 2017, https://doi.org/10.1109/JSTQE.2016.2644259.

    Article  Google Scholar 

  2. T. J. Wang et al., “High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control,” Appl. Phys. Lett., vol. 95, no. 13, pp. 111–114, 2009, https://doi.org/10.1063/1.3242024.

    Article  Google Scholar 

  3. T.-J. Wang et al., “High energy THz generation from meter-long two-color filaments in air,” Laser Phys. Lett., vol. 7, no. 7, pp. 517–521, 2010, https://doi.org/10.1002/lapl.201010020.

    Article  Google Scholar 

  4. I. Dey et al., “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun., vol. 8, no. 1, pp. 1–7, 2017, https://doi.org/10.1038/s41467-017-01382-x.

    Article  Google Scholar 

  5. T. I. Oh, Y. S. You, N. Jhajj, E. W. Rosenthal, H. M. Milchberg, and K. Y. Kim, “Intense terahertz generation in two-color laser filamentation: energy scaling with terawatt laser systems,” New J. Phys., vol. 15, 2013, https://doi.org/10.1088/1367-2630/15/7/075002.

  6. M. B. Agranat, O. V. Chefonov, A. V. Ovchinnikov, S. I. Ashitkov, V. E. Fortov, and P. S. Kondratenko, “Damage in a thin metal film by high-power terahertz radiation,” Phys. Rev. Lett., vol. 120, no. 8, p. 085704, 2018, https://doi.org/10.1103/PhysRevLett.120.085704.

    Article  Google Scholar 

  7. A. Gopal et al., “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett., vol. 111, no. 7, p. 074802, 2013, https://doi.org/10.1103/PhysRevLett.111.074802.

    Article  Google Scholar 

  8. A. V. Mitrofanov et al., “Ultraviolet-to-millimeter-band supercontinua driven by ultrashort mid-infrared laser pulses,” Optica, vol. 7, no. 1, p. 15, 2020, https://doi.org/10.1364/OPTICA.7.000015.

    Article  Google Scholar 

  9. A. D. Koulouklidis et al. “Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments”. Nature Communications, 11(1), 1–8, (2020).

    Article  Google Scholar 

  10. H. Hamster, A. Sullivan, S. Gordon, and R. W. Falcone, “Short-pulse terahertz radiation from high-intensity-laser-produced plasmas,” Phys. Rev. E, vol. 49, no. 1, pp. 671–677, 1994, https://doi.org/10.1103/PhysRevE.49.671.

    Article  Google Scholar 

  11. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports, vol. 441, no. 2–4. pp. 47–189, 2007, https://doi.org/10.1016/j.physrep.2006.12.005.

    Article  Google Scholar 

  12. Y.-J. Yoo, D. Jang, and K.-Y. Kim, “Highly enhanced terahertz conversion by two-color laser filamentation at low gas pressures,” Opt. Express, 27, 16, 22663, 2019, https://doi.org/10.1364/OE.27.022663.

    Article  Google Scholar 

  13. T. I. Oh, Y. S. You, N. Jhajj, E. W. Rosenthal, H. M. Milchberg, and K. Y. Kim, “Scaling and saturation of high-power terahertz radiation generation in two-color laser filamentation,” Appl. Phys. Lett., vol. 102, no. 20, pp. 1–4, 2013, https://doi.org/10.1063/1.4807790.

    Article  Google Scholar 

  14. G. Rodriguez and G. L. Dakovski, “Scaling behavior of ultrafast two-color terahertz generation in plasma gas targets: energy and pressure dependence,” Opt. Express, vol. 18, no. 14, p. 15130, 2010, https://doi.org/10.1364/oe.18.015130.

    Article  Google Scholar 

  15. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics, vol. 2, no. 10, pp. 605–609, 2008, https://doi.org/10.1038/nphoton.2008.153.

    Article  Google Scholar 

  16. K.-Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express, vol. 15, no. 8, p. 4577, 2007, https://doi.org/10.1364/OE.15.004577.

    Article  Google Scholar 

  17. M. M. Nazarov, A. V. Mitrofanov, P. M. Solyankin, Z. Ch. Margushev, M. V. Chaschin, A. P. Shkurinov, D. A. Sidorov-Biryukov, V. Ya. Panchenko, “High-intensity THz pulse generation by TW laser radiation in ionized gas and nonlinear crystals,” J. Phys. Conf. Ser., 2019, in print.

  18. M.M. Nazarov, et.al.”Filamentation-assisted μJ THz generation by 2-TW laser pulses in a low-pressure gas” In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (pp. 1–2). IEEE, (2019)

  19. M. S. Kitai and M. M. Nazarov, “On the fractal absorption spectra of polymers in the low-frequency part of the terahertz range,” Radiophys. Quantum Electron., vol. 61, no. 5, pp. 374–381, 2018, doi: https://doi.org/10.1007/s11141-018-9898-z.

    Article  Google Scholar 

  20. M. M. Nazarov, A. P. Shkurinov, F. Garet, and J. L. Coutaz, “Characterization of highly doped Si through the excitation of THz surface plasmons,” IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 4, pp. 680–686, 2015, https://doi.org/10.1109/TTHZ.2015.2443562.

    Article  Google Scholar 

  21. C. D. Amico et al., “Forward THz radiation emission by femtosecond filamentation in gases: theory and experiment,” New J. Phys., vol. 10, 2008, https://doi.org/10.1088/1367-2630/10/1/013015.

  22. S.I. Mitryukovskiy, Y. Liu, B. Prade, A. Houard, A. Mysyrowicz “Coherent synthesis of terahertz radiation from femtosecond laser filaments in air”. Applied Physics Letters. 102, 22, 221107, 2013, https://doi.org/10.1063/1.4807917.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Мaxim М. Nazarov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To reconstruct the total THz spectrum from the data of transmitted energy with different filters, the following method was developed: Full THz spectrum was represented by model curve S(f), which goes down to zero in the microwave and infrared spectrum ranges, with adjustable spectral width Δ, and slopes (b for microwave edge, g for infrared edge), with area normalized to unity.

$$ S(f)=\frac{f^b\exp \left[-{\left(\frac{f}{\Delta }\right)}^g\right]}{\underset{0}{\overset{\infty }{\int }}{f}^b\exp \left[-{\left(\frac{f}{\Delta }\right)}^g\right]\mathrm{df}}\kern1em $$
(A1)

where b, g, Δ are fitting parameters for a particular experimental data.

The signal detected after transmission through the particular filter should be equal to the integral of the product of S(f) and transmission filter Sm(f)i spectra (see A6, A7 below) over the used frequency range. Parameters of function S(f) were fitted by total error minimization with N filters:

$$ \delta =\sum \limits_{i=1}^N{\left({T}_{e_i}-{\int}_0^{\infty }S(f)\cdotp {S}_m{(f)}_i\cdotp \mathrm{d}f\right)}^2 $$
(A2)

where i is the filter number, \( {T}_{e_i} \) is the filter transmitted signal in the experiment (normalized to unfiltered THz signal). For the models in Figs. 2, 3, and 4 we used: b = 0.6; g = 1.8; Δ = 2 THz.

For a quality description of pressure and energy dependence of THz energy next simplified model was used:

Electron concentration is simulated as:

$$ {N}_e(p)={N}_e\frac{p}{p_0}, $$
(A3)

where Ne = 1 × 1016cm−3, p0—atmospheric pressure. To fit THz energy dependence on Fig. 4b, we used Ф(I)~I, and Ne~I that is not true in general.

Plasma transmission spectrum is calculated as:

$$ T\left(f,p,L,I\right)=\exp \left[\frac{2\pi f}{c}L\ \mathit{\operatorname{Im}}\left[{\left[1-\frac{\frac{N_e\left(p,I\right)\cdotp {e}^2}{m_e\cdotp {\varepsilon}_0}}{{\left(2\pi f\right)}^2-i\cdotp \nu \left(2\pi f\right)}\right]}^{0.5}\right]\right]\kern1.25em $$
(A4)

To fit our experimental data, we used \( \nu =0.1\frac{\mathrm{THz}}{2\uppi},L=10\mathrm{cm} \).

THz pulse energy after plasma and filters absorption is calculated as:

$$ {U}_{\mathrm{THz}}=\frac{Ne{\left(p,I\right)}^2\cdotp {I}^2\cdotp I}{N_0^2{I_0}^3}\cdotp \underset{0}{\overset{\infty }{\int }}S(f)\cdotp T\left(f\cdotp THz,p,L,I\right)\cdotp {T}_{\mathrm{filter}}\left(f,d\right)\mathrm{df}\kern1em $$
(A5)

where I is laser intensity at 800 nm, I0 = 3 × 1013 W/cm2. The fraction before the integral describes proportionality of THz signal to the carrier concentration, to the intensity of the fundamental radiation and to intensity of second harmonic.

Filter transmissions Tfilter(f,d) were calculated by Fresnel formulas for a plane-parallel plate. The absorption coefficient for PMMA was approximated as

$$ {\alpha}_{\mathrm{pmma}}(f)=\frac{f^2\cdotp 7.39+4.4\cdotp f}{2} $$
(A6)

where f- is in THz. For silicon with conductivity 0.3 Ω × cm, its permittivity was calculated as:

$$ {\varepsilon}_{Si}(f)=11.9-\frac{{\left(2\pi \cdotp 2.33 THz\right)}^2}{{\left(2\pi f\right)}^2+i\left[1.17\cdotp THz\cdotp \left(2\pi \right)\right]2\pi f}\kern0.75em $$
(A7)

here, 2.33 THz is plasma frequency, which depends on the doping level, for other used silicon filters with conductivity 0.9 and 1.1 Ω cm, it was 1.13 and 2.55 THz, respectively. The thickness of PMMA and Si filters used for Figs. 3b and 4b data was d = 2.5 mm, and d = 270 μm respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, М.М., Mitrofanov, A.V., Sidorov-Biryukov, D.A. et al. Enhancement of THz Generation by Two-Color TW Laser Pulses in a Low-Pressure Gas. J Infrared Milli Terahz Waves 41, 1069–1081 (2020). https://doi.org/10.1007/s10762-020-00689-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00689-z

Keywords

Navigation