Skip to main content
Log in

Precise correction of integrated optical power splitters based on lithium niobate substrates by photorefractive effect local excitation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A method for precise adjustment of the power splitting ratio for integrated optical splitters fabricated on lithium niobate substrates is proposed. The method is based on a local refractive index change caused by the photorefractive effect under external illumination of certain areas of waveguide power splitters. A fiber optic probe was used for precise positioning of an external illumination spot. Predictable tuning of the splitting ratio for two basic splitter configurations (directional couplers and y-branches) was demonstrated. Precise adjustment of the power splitting ratio in a relatively narrow range (2%) led to a significant growth in the Mach–Zehnder modulator extinction ratio (as high as 17 dB, from 30 to 47 dB). The proposed method is simple and can prove to be a very promising additive technique for improvement of lithium niobate integrated optical schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.P. Petrov, S.I. Stepanov, A.V. Khomenko, Photorefractive crystals in coherent optical systems (Springer, Berlin, Heidelberg, 1991)

    Book  Google Scholar 

  2. K. Buse, E. Krätzig, K.H. Ringhofer, Appl. Phys. B 72, 633 (2001)

    Article  ADS  Google Scholar 

  3. K. Buse, J. Imbrock, E. Krätzig, K. Peithmann, Photorefractive Effects in LiNbO3 and LiTaO3, in Photorefractive materials and their applications 83, ed. by P. Günter, J.P. Huignard (Springer, New York, 2007)

    Google Scholar 

  4. J.E. Toney, Lithium niobate photonics (Artech House, Norwood, 2015)

    Google Scholar 

  5. M. Bazzan, C. Sada, Appl. Phys. Rev. 2, 040603 (2015)

    Article  ADS  Google Scholar 

  6. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, Opt. Photonics News 19, 24 (2008)

    Article  ADS  Google Scholar 

  7. A. Chen, E.J. Murphy, Broadband optical modulators: science, technology, and applications (CRC Press, Boca Raton, 2012)

    Google Scholar 

  8. E.L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeier, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, D.E. Bossi, IEEE J. Sel. Topics Quant Elect. 6, 69 (2000)

    Article  ADS  Google Scholar 

  9. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar, Nature 562, 101 (2018)

    Article  ADS  Google Scholar 

  10. C.S. Tsai, Guided-wave acousto-optics: interactions, devices, and applications (Springer, Berlin, Heidelberg, 1990)

    Book  Google Scholar 

  11. H. Okayama, Lithium niobate electro-optic switching, in Optical switching, 39, ed. by T.S. El-Bawab (Springer, Boston, 2006)

    Google Scholar 

  12. M.P. Petrov, A.V. Chamrai, A.S. Kozlov, I.V. Il’Ichev, Tech. Phys. Lett. 30, 120 (2004)

    Article  ADS  Google Scholar 

  13. K.R. Parameswaran, R.K. Route, J.R. Kurz, R.V. Roussev, M.M. Fejer, M. Fujimura, Opt. Lett. 27, 179 (2002)

    Article  ADS  Google Scholar 

  14. S. Thaniyavarn, Opt. Lett. 11, 39 (1986)

    Article  ADS  Google Scholar 

  15. D. Noriega Urquídez, S. Stepanov, H. Soto Ortiz, N. Toguzov, I. Ilichev, A. Shamray, Appl. Phys. B 106, 51 (2012)

    Article  ADS  Google Scholar 

  16. E. Van Wood, P.J. Cressman, R.L. Holman, C.M. Verber, Photorefractive waveguides, in Photorefractive materials and their applications II, Survey of Applications 45, ed. by P. Günter, J.P. Huignard (Springer, Berlin, Heidelberg, 1989)

    Google Scholar 

  17. K.D. Kip, M. Wesner, Photorefractive waveguides, in Photorefractive materials and their applications 1, Basic effects, 289, ed. by P. Günter, J.P. Huignard (Springer, New York, 2006)

    Google Scholar 

  18. D. Kip, Appl. Phys. B 67, 131 (1998)

    Article  ADS  Google Scholar 

  19. C.T. Mueller, E. Garmire, Appl. Opt. 23, 4348 (1984)

    Article  ADS  Google Scholar 

  20. G.T. Harvey, J. Light. Tech. 6, 872 (1988)

    Article  Google Scholar 

  21. S.M. Kostritskii, Appl. Phys. B 95, 421 (2009)

    Article  ADS  Google Scholar 

  22. O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, S. Tanzilliet, J. Opt. 18, 104001 (2016)

    Article  ADS  Google Scholar 

  23. P. Lu, N. Lalam, M. Badar, B. Liu, B.T. Chorpening, M.P. Buric, P.R. Ohodnicki, Appl. Phys. Rev. 6, 041302 (2019)

    Article  ADS  Google Scholar 

  24. H. Sasaki, I. Anderson, IEEE J. Quantum Electron. 14, 883 (1978)

    Article  ADS  Google Scholar 

  25. H. Kogelnik, R.V. Schmidt, IEEE. J. Quantum Electron. QE-2, 396 (1976)

    Article  ADS  Google Scholar 

  26. S.K. Korotky, J.J. Veselka, J. Light. Technol. 14, 2687 (1996)

    Article  ADS  Google Scholar 

  27. L.L. Wang, T. Kowalcyzk, J. Light. Technol. 28, 1703 (2010)

    Article  ADS  Google Scholar 

  28. F. Chen, J.R.V. Aldana, Laser Photonics Rev. 8, 251 (2014)

    Article  ADS  Google Scholar 

  29. A.H. Nejadmalayeri, P.R. Herman, Opt. Lett. 31, 2987 (2006)

    Article  ADS  Google Scholar 

  30. F.S. Chen, J. Appl. Phys. 40, 3389 (1969)

    Article  ADS  Google Scholar 

  31. I.V. Il’ichev, N.V. Toguzov, A.V. Shamray, Tech. Phys. Lett. 35, 831 (2009)

    Article  ADS  Google Scholar 

  32. P.M. Karavaev, I.V. Ilichev, P.M. Agruzov, A.V. Tronev, A.V. Shamray, Tech. Phys. Lett. 42, 513 (2016)

    Article  ADS  Google Scholar 

  33. J. Van Roey, J. van der Donk, P.E. Lagasse, J. Opt. Soc. Am. 71, 803 (1981)

    Article  ADS  Google Scholar 

  34. F. Heismann, S.K. Korotky, J.J. Veselka, Lithium niobate integrated-optics: selected contemporary devices and system applications, in Optical fiber telecommunications IIIB, V. 3B, 1st edition 515, ed. by I.P. Kaminow, T.L. Koch (Academic Press, San Diego, 2012)

    Google Scholar 

  35. E.A.J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969)

    Article  Google Scholar 

  36. M. Izutsu, Y. Nakai, T. Sueta, Opt. Lett. 7, 136 (1982)

    Article  ADS  Google Scholar 

  37. A.I. Grachev, A.V. Chamrai, M.P. Petrov, OSA TOPS 62, 203 (2011)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation, Project  19-19-00511.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Parfenov.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parfenov, M., Tronev, A., Ilichev, I. et al. Precise correction of integrated optical power splitters based on lithium niobate substrates by photorefractive effect local excitation. Appl. Phys. B 126, 93 (2020). https://doi.org/10.1007/s00340-020-07440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07440-5

Navigation