Skip to main content
Log in

Effect of Titanium Substrate Surface on the Titanium Oxide Membrane Pore Diameter, Formed upon Anodization in the Presence of Fluoride Ions

  • Published:
Theoretical and Experimental Chemistry Aims and scope

This is the first report of the dependence of the pore diameter in a titania membrane prepared by anodizing a titanium substrate in the presence of fluoride ions on the curvature of its surface. Titania membranes with uniform pores are formed on the smooth electrode surface. The pore diameter is greater in the case of negative curvature of the titanium substrate, while it is smaller in the case of positive curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Masuda and K. Fukuda, Science, 5216, 1466 (1995).

    Article  Google Scholar 

  2. O. Jessensky, F. Müller, and U. Gösele, Appl. Phys. Lett., 10, 1173-1175 (1998).

    Article  Google Scholar 

  3. J. M. Macak, H. Tsuchiya, A. Ghicov, et al., Curr. Opin. Solid State Mater. Sci., 1, 3-18 (2007).

    Article  Google Scholar 

  4. A. Jaroenworaluck, D. Regonini, C. R. Bowen, et al., J. Mater. Sci., 16, 6729-6734 (2007).

    Article  Google Scholar 

  5. H. Tsuchiya, J. M. Macak, A. Ghicov, and P. Schmuki, Small, 7, 888-891 (2006).

    Article  Google Scholar 

  6. H. Tsuchiya, T. Akaki, J. Nakata, et al., Corros. Sci., 7, 1528-1533 (2009).

    Article  Google Scholar 

  7. V. Zwilling, M. Aucouturier, and F. Darque-Ceretti, Electrochim. Acta, 45, No. 6, 921-929 (1999).

    Article  CAS  Google Scholar 

  8. A. H. Elzarka, N. Liu, I. Hwang, et al., Chem. Eur. J., 23, No. 53, 12995-12999 (2017).

    Article  CAS  Google Scholar 

  9. D. P. Kumar, V. D. Kumari, M. Karthik, et al., Sol. Energy Mater. Sol. Cells, 163, 113-119 (2017).

    Article  CAS  Google Scholar 

  10. T. T. Y. Hung and J. L. Lin, IEEE Sens. Lett., 3, 1-3 (2017).

    Article  Google Scholar 

  11. G. F. Ortiz, I. Hanzu, T. Djenizian, et al., Chem. Mater., 1, 63-67 (2008).

    Google Scholar 

  12. J. Sun, G. Gao, and Q. Zhang, J. Am. Ceram. Soc., 10, 1677-1682 (2003).

    Article  Google Scholar 

  13. J. Schweicher and T. A. Desai, J. Appl. Electrochem., 3, 411-418 (2014).

    Article  Google Scholar 

  14. F. Wu, Y. Yu, H. Yang, et al., Adv. Mater., 28, 1701432 (2017).

    Article  Google Scholar 

  15. Y. Shin and S. Lee, Nano Lett., 10, 3171-3173 (2008).

    Article  Google Scholar 

  16. K. S. Raja, M. Misra, and K. Paramguru, Electrochim. Acta, 51, No. 1, 154-165 (2005).

    Article  CAS  Google Scholar 

  17. G. D. Sulka, J. Kapusta-Kolodziej, A. Brzózka, and M. Jaskula, Electrochim. Acta, 55, No. 14, 4359-4367 (2010).

    Article  CAS  Google Scholar 

  18. A. Apolinario, S. T. Sousa, J. Ventura, et al., J. Mater. Chem. A, 24, 9067-9078 (2014).

    Article  Google Scholar 

  19. K. Kant and D. Losic, Phys. Status Solidi Rapid Res. Lett., 5, 139-141 (2009).

    Article  Google Scholar 

  20. B. Chen and K. Lu, Langmuir, 19, 12179-12185 (2011).

    Article  Google Scholar 

  21. J. E. Houser and K. R. Herbert, Nature Mater., 5, 415-420 (2009).

    Article  Google Scholar 

  22. A. K. Kasi, J. K. Kasi, N. Afzulpurkar, et al., J. Vac. Sci. Technol. B, 30, No. 3, 031805 (2012).

  23. B. R. Tzaneva, A. I. Naydenov, S. Z. Todorova, et al., Electrochim. Acta, 191, 192-199 (2016).

    Article  CAS  Google Scholar 

  24. Y. Li, Q. Ma, J. Han, et al., Appl. Surf. Sci., 297, 103-108 (2014).

    Article  CAS  Google Scholar 

  25. K. Yasuda, J. M. Macak, S. Berger, et al., J. Electrochim. Soc., 154, No. 9, C472-C478 (2007).

    Article  CAS  Google Scholar 

Download references

The authors thank the Physics Department of the University of Balochistan, Quetta, Pakistan for access to the Nano Lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ajmal.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 56, No. 1, pp. 28-34, January-February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajmal, S., Bokhari, M., Kasi, A.K. et al. Effect of Titanium Substrate Surface on the Titanium Oxide Membrane Pore Diameter, Formed upon Anodization in the Presence of Fluoride Ions. Theor Exp Chem 56, 26–32 (2020). https://doi.org/10.1007/s11237-020-09636-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-020-09636-4

Key words

Navigation