Skip to main content
Log in

CHDS: conflict handling in direct sampling for stochastic simulation of spatial variables

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In recent years, multiple-point geostatistical (MPS) approaches have gained significant popularity for modeling subsurface heterogeneity in hydrogeological systems by employing a training image for describing the features of the target field. The most important challenges of MPS simulation methods include appropriate pattern reproduction and connectivity preservation, handling conditional data, and appropriately modeling the variability of real fields. Preserving connectivity of the patterns is of paramount importance, particularly in fluid flow modeling problems. During sequential simulation, if the algorithm produces a value (or patch) inconsistently with previously synthesized data, such conflicts will propagate in the realization and lead to poor pattern reproduction. Here, we have introduced a two-step simulation algorithm, where in the first phase, the coarse structure of the realization is synthesized with minimum conflicts by rejecting inconsistent patterns and allowing removing previously synthesized data, and in the second phase, the fine grid is simulated by ignoring the conflicts. Ignoring short-range inconsistencies in the fine simulation phase not only improves the algorithm’s convergence but also leads to higher variabilities without sacrificing the quality of the realizations. Convergence problems of traditional conflict-handling methods are further alleviated by a new distance reweighting strategy, which prevents cyclic deletions and resimulations. We have employed different statistical descriptors to evaluate our method in comparison with existing pixel and patch-based methods in conditional and unconditional modes. The proposed method shows outstanding results in terms of connectivity preservation, conditional data handling, and pattern innovation. Compared to traditional conflict-handling methods, the proposed method shows good convergence and histogram preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdollahifard MJ (2016) Fast multiple-point simulation using a data-driven path and an efficient gradient-based search. Comput Geosci 86:64–74

    Article  Google Scholar 

  • Abdollahifard MJ, Ahmadi S (2016) Reconstruction of binary geological images using analytical edge and object models. Comput Geosci 89:239–251

    Article  Google Scholar 

  • Abdollahifard MJ, Faez K (2014) Fast direct sampling for multiple-point stochastic simulation. Arab J Geosci 7(5):1927–1939

    Article  Google Scholar 

  • Abdollahifard MJ, Nasiri B (2017) Exploiting transformation-domain sparsity for fast query in multiple-point geostatistics. Comput Geosci 21(2):289–299

    Article  Google Scholar 

  • Abdollahifard MJ, Mariethoz G, Pourfard M (2016) Improving in situ data acquisition using training images and a Bayesian mixture model. Comput Geosci 91:49–63

    Article  Google Scholar 

  • Abdollahifard MJ, Baharvand M, Mariéthoz G (2019a) Efficient training image selection for multiple-point geostatistics via analysis of contours. Comput Geosci 128:41–50

    Article  Google Scholar 

  • Abdollahifard MJ, Mariethoz G, Ghavim M (2019b) Quantitative evaluation of multiple-point simulations using image segmentation and texture descriptors. Comput Geosci 23:1349

    Article  Google Scholar 

  • Abdollahifard, MJ, Mariéthoz G, Mohammadi HS (2020) Investigating extreme scenarios with multiple-point geostatistics and variance maximization. Stoch Environ Res Risk Assess 34:67–85. https://doi.org/10.1007/s00477-019-01759-y

    Article  Google Scholar 

  • Bayer P, Huggenberger P, Renard P, Comunian A (2011) Three-dimensional high resolution fluvio-glacial aquifer analog: Part 1: Field study. J Hydrol 405(1–2):1–9

    Article  Google Scholar 

  • Boucher A, Kyriakidis PC, Cronkite-Ratcliff C (2007) Geostatistical solutions for super-resolution land cover mapping. IEEE Trans Geosci Remote Sens 46(1):272–283

    Article  Google Scholar 

  • Caers J, Strebelle S, Payrazyan K (2003) Stochastic integration of seismic data and geologic scenarios: A West Africa submarine channel saga. Lead Edge 22(3):192–196

    Article  Google Scholar 

  • Chen Q, Liu G, Ma X, Zhang J, Zhang X (2019) Conditional multiple-point geostatistical simulation for unevenly distributed sample data. Stoch Environ Res Risk Assess 33:973–987. https://doi.org/10.1007/s00477-019-01671-5

    Article  Google Scholar 

  • Comunian A, Renard P, Straubhaar J, Bayer P (2011) Three-dimensional high resolution fluvio-glacial aquifer analog–Part 2: Geostatistical modeling. J Hydrol 405(1–2):10–23

    Article  Google Scholar 

  • Dagasan Y, Erten O, Renard P, Straubhaar J, Topal E (2019) Multiple-point statistical simulation of the ore boundaries for a lateritic bauxite deposit. Stoch Env Res Risk Assess 33(3):865–878

    Article  Google Scholar 

  • de Carvalho PRM, da Costa JFCL, Rasera LG, Varella LES (2017) Geostatistical facies simulation with geometric patterns of a petroleum reservoir. Stoch Environ Res Risk Assess 31(7):1805–1822

    Article  Google Scholar 

  • dell’Arciprete D, Bersezio R, Felletti F, Giudici M, Comunian A, Renard P (2012) Comparison of three geostatistical methods for hydrofacies simulation: a test on alluvial sediments. Hydrogeol J 20(2):299–311

    Article  Google Scholar 

  • Falivene O, Arbues P, Gardiner A, Pickup G, Munoz JA, Cabrera L (2006) Best practice stochastic facies modeling from a channel-fill turbidite sandstone analog (the Quarry outcrop, Eocene Ainsa basin, northeast Spain). AAPG bulletin 90(7):1003–1029

    Article  Google Scholar 

  • Guardiano FB, Srivastava RM (1993) Multivariate geostatistics: beyond bivariate moments Geostatistics Troia’92. Springer, Berlin, pp 133–144

    Google Scholar 

  • He XL, Sonnenborg TO, Jørgensen F, Jensen KH (2014) The effect of training image and secondary data integration with multiple-point geostatistics in groundwater modelling. Hydrol Earth Syst Sci 18(8):2943–2954

    Article  Google Scholar 

  • Honarkhah M, Caers J (2010) Stochastic simulation of patterns using distance-based pattern modeling. Math Geosci 42(5):487–517

    Article  Google Scholar 

  • Huysmans M, Dassargues A (2009) Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium). Hydrogeol J 17(8):1901

    Article  CAS  Google Scholar 

  • Jha SK, Mariethoz G, Kelly BFJ (2013) Bathymetry fusion using multiple-point geostatistics: novelty and challenges in representing non-stationary bedforms. Environ Model Softw 50:66–76

    Article  Google Scholar 

  • Kalantari S, Abdollahifard MJ (2016) Optimization-based multiple-point geostatistics: a sparse way. Comput Geosci 95:85–98

    Article  Google Scholar 

  • Karimpouli S, Tahmasebi P (2016) Conditional reconstruction: An alternative strategy in digital rock physics. Geophysics 81(4):D465–D477

    Article  Google Scholar 

  • Le Coz M, Genthon P, Adler PM (2011) Multiple-point statistics for modeling facies heterogeneities in a porous medium: the Komadugu-Yobe alluvium, Lake Chad basin. Math Geosci 43(7):861

    Article  Google Scholar 

  • Li X, Mariethoz G, Lu D, Linde N (2016) Patch-based iterative conditional geostatistical simulation using graph cuts. Water Resour Res 52(8):6297–6320

    Article  Google Scholar 

  • Maharaja A (2008) TiGenerator: object-based training image generator. Comput Geosci 34(12):1753–1761

    Article  CAS  Google Scholar 

  • Mahmud K, Mariethoz G, Caers J, Tahmasebi P, Baker A (2014) Simulation of Earth textures by conditional image quilting. Water Resour Res 50(4):3088–3107

    Article  Google Scholar 

  • Mariethoz G, Caers J (2014) Multiple-point geostatistics: stochastic modeling with training images. Wiley, London

    Book  Google Scholar 

  • Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46:11

    Google Scholar 

  • Mariethoz G, McCabe MF, Renard P (2012) Spatiotemporal reconstruction of gaps in multivariate fields using the direct sampling approach. Water Resour Res 48:10

    Article  Google Scholar 

  • Meerschman E, Pirot G, Mariethoz G, Straubhaar J, Van Meirvenne M, Renard P (2013) A practical guide to performing multiple-point statistical simulations with the direct sampling algorithm. Comput Geosci 52:307–324

    Article  Google Scholar 

  • Okabe H, Blunt MJ (2007) Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics. Water Resour Res 43:12

    Article  Google Scholar 

  • Oriani F, Straubhaar J, Renard P, Mariethoz G (2014) Simulation of rainfall time series from different climatic regions using the direct sampling technique. Hydrol Earth Syst Sci 18:3015–3031

    Article  Google Scholar 

  • Pardo-Igúzquiza E, Dowd PA (2003) CONNEC3D: a computer program for connectivity analysis of 3D random set models. Comput Geosci 29(6):775–785

    Article  Google Scholar 

  • Pourfard M, Abdollahifard MJ, Faez K, Motamedi SA, Hosseinian T (2017) PCTO-SIM: Multiple-point geostatistical modeling using parallel conditional texture optimization. Comput Geosci 102:116–138

    Article  Google Scholar 

  • Renard P, Allard D (2013) Connectivity metrics for subsurface flow and transport. Adv Water Resour 51:168–196

    Article  Google Scholar 

  • Rezaee H, Marcotte D (2017) Integration of multiple soft data sets in MPS thru multinomial logistic regression: a case study of gas hydrates. Stoch Env Res Risk Assess 31(7):1727–1745

    Article  Google Scholar 

  • Rezaee H, Asghari O, Koneshloo M, Ortiz JM (2014) Multiple-point geostatistical simulation of dykes: application at Sungun porphyry copper system, Iran. Stoch Environ Res Risk Assess 28(7):1913–1927

    Article  Google Scholar 

  • Rezaee H, Marcotte D, Tahmasebi P, Saucier A (2015) Multiple-point geostatistical simulation using enriched pattern databases. Stoch Environ Res Risk Assess 29(3):893–913

    Article  Google Scholar 

  • Ronayne MJ, Gorelick SM, Caers J (2008) Identifying discrete geologic structures that produce anomalous hydraulic response: An inverse modeling approach. Water Resour Res 44:8

    Article  Google Scholar 

  • Shahraeeni M (2018) Enhanced multiple-point statistical simulation with backtracking, forward checking and conflict-directed backjumping. Math Geosci 1:32

    Google Scholar 

  • Shahraeeni M (2019) Enhanced multiple-point statistical simulation with backtracking, forward checking and conflict-directed backjumping. Math Geosci 51(2):155–186

    Article  Google Scholar 

  • Sharifzadehlari M, Fathianpour N, Renard P, Amirfattahi R (2018) Random partitioning and adaptive filters for multiple-point stochastic simulation. Stoch Environ Res Risk Assess 32(5):1375–1396

    Article  Google Scholar 

  • Stien M, Abrahamsen P, Hauge R, Kolbjørnsen O (2017) Modification of the SNESIM algorithm. In: EAGE conference on petroleum geostatistics, Sept 10, 2007. European Association of Geoscientists & Engineers, pp cp-32. https://doi.org/10.3997/2214-4609.201403071

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21

    Article  Google Scholar 

  • Strebelle S, Remy N (2005) Post-processing of multiple-point geostatistical models to improve reproduction of training patterns. Geostatistics Banff 2004. Springer, Berlin, pp 979–988

    Google Scholar 

  • Suzuki S, Strebelle S (2007) Real-time post-processing method to enhance multiple-point statistics simulation. Petrol Geostat 230:10–14

    Google Scholar 

  • Tahmasebi P (2017) HYPPS: a hybrid geostatistical modeling algorithm for subsurface modeling. Water Resour Res 53(7):5980–5997

    Article  Google Scholar 

  • Tahmasebi P (2018) Multiple point statistics: a review. handbook of mathematical geosciences. Springer, Berlin, pp 613–643

    Book  Google Scholar 

  • Tahmasebi P, Sahimi M (2013) Cross-correlation function for accurate reconstruction of heterogeneous media. Phys Rev Lett 110(7):078002

    Article  CAS  Google Scholar 

  • Vo HX, Durlofsky LJ (2015) Data assimilation and uncertainty assessment for complex geological models using a new PCA-based parameterization. Comput Geosci 19(4):747–767

    Article  Google Scholar 

  • Zhang T, Du Y, Huang T, Li X (2015) Reconstruction of porous media using multiple-point statistics with data conditioning. Stoch Environ Res Risk Assess 29(3):727–738

    Article  Google Scholar 

  • Zhang T, Du Y, Huang T, Yang J, Lu F, Li X (2016) Reconstruction of porous media using ISOMAP-based MPS. Stoch Environ Res Risk Assess 30(1):395–412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Abdollahifard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The computer code and data are freely available for academic purposes at the following page: https://github.com/abdollahifard/CHDS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltan Mohammadi, H., Abdollahifard, M.J. & Doulati Ardejani, F. CHDS: conflict handling in direct sampling for stochastic simulation of spatial variables. Stoch Environ Res Risk Assess 34, 825–847 (2020). https://doi.org/10.1007/s00477-020-01801-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-020-01801-4

Keywords

Navigation