Skip to main content
Log in

Mo2C@3D ultrathin macroporous carbon realizing efficient and stable nitrogen fixation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ammonia is a key feedstock of fertilizers for farming and convenient hydrogen carrier as an emerging clean fuel, but industrial ammonium production process, Haber-Bosch reaction, is an energy-intensive process, consuming 1%–2% of global energy and producing 3% global CO2. Electrochemical nitrogen reduction reaction (NRR) is one of the most promising routes to realize highly efficient NH3 production under ambient conditions. However, up to now, few precious-metal-free electrocatalysts with desirable catalytic performance have been explored. In this work, Mo2C nanodots anchored on three-dimensional ultrathin macroporous carbon (Mo2C@3DUM-C) framework is developed toward significantly enhanced nitrogen reduction reaction. Thanks to the special structural design of 3D ultrathin macroporous carbon and highly active and stable Mo2C toward N2 electrochemical reduction, the Mo2C@3DUM-C framework exhibits a high Faradaic efficiency of 9.5% for NH3 production at −0.20 V and the yield rate reaches 30.4 µg h−1\({\rm{m}}{{\rm{g}}_{{\rm{M}}{{\rm{0}}_{\rm{2}}}{\rm{C}}}}^{-1}\). Further electrochemical characterizations reveal the enhanced electron transfer and increased electrochemical surface area in the 3D macroporous carbon framework. Moreover, the Mo2C@3DUM-C electrocatalysts hold high catalytic stability after long-term NRR test. The temperature-dependent yield rate of NH3 demonstrates that the activation energy of nitrogen reduction on the employed catalyst was calculated to be 28.1 kJ mol−1. Our proposed earth-abundant Mo2C@3DUM-C demonstrates an alternative insight into developing efficient and stable nitrogen fixation catalysts in acids as alternatives to noble metal catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilbert N. Nature, 2012, 483: 525–527

    Article  CAS  PubMed  Google Scholar 

  2. Wang L, Xia M, Wang H, Huang K, Qian C, Maravelias CT, Ozin GA. Joule, 2018, 2: 1055–1074

    Article  CAS  Google Scholar 

  3. Zheng G, Yan JM, Yu G. Small Methods, 2019, 3: 1900070

    Article  Google Scholar 

  4. Tang C, Qiao SZ. Chem Soc Rev, 2019, 48: 3166–3180

    Article  CAS  PubMed  Google Scholar 

  5. Wan Y, Xu J, Lv R. Mater Today, 2019, 27: 69–90

    Article  CAS  Google Scholar 

  6. Xu H, Ithisuphalap K, Li Y, Mukherjee S, Lattimer J, Soloveichik G, Wu G. Nano Energy, 2020, 69: 104469

    Article  CAS  Google Scholar 

  7. Cao N, Zheng G. Nano Res, 2018, 11: 2992–3008

    Article  CAS  Google Scholar 

  8. van der Ham CJM, Koper MTM, Hetterscheid DGH. Chem Soc Rev, 2014, 43: 5183–5191

    Article  CAS  PubMed  Google Scholar 

  9. Geng Z, Liu Y, Kong X, Li P, Li K, Liu Z, Du J, Shu M, Si R, Zeng J. Adv Mater, 2018, 30: 1803498

    Article  CAS  Google Scholar 

  10. Yao Y, Zhu S, Wang H, Li H, Shao M. J Am Chem Soc, 2018, 140: 1496–1501

    Article  CAS  PubMed  Google Scholar 

  11. Lv C, Yan C, Chen G, Ding Y, Sun J, Zhou Y, Yu G. Angew Chem Int Ed, 2018, 57: 6073–6076

    Article  CAS  Google Scholar 

  12. Lv C, Qian Y, Yan C, Ding Y, Liu Y, Chen G, Yu G. Angew Chem Int Ed, 2018, 57: 10246–10250

    Article  CAS  Google Scholar 

  13. Mukherjee S, Yang X, Shan W, Samarakoon W, Karakalos S, Cullen DA, More K, Wang M, Feng Z, Wang G, Wu G. Small Methods, 2020, 4: 1900821

    Article  CAS  Google Scholar 

  14. Yu X, Han P, Wei Z, Huang L, Gu Z, Peng S, Ma J, Zheng G. Joule, 2018, 2: 1610–1622

    Article  CAS  Google Scholar 

  15. Chen GF, Cao X, Wu S, Zeng X, Ding LX, Zhu M, Wang H. J Am Chem Soc, 2017, 139: 9771–9774

    Article  CAS  PubMed  Google Scholar 

  16. Luo Y, Chen GF, Ding L, Chen X, Ding LX, Wang H. Joule, 2019, 3: 279–289

    Article  CAS  Google Scholar 

  17. Zhang L, Ding L, Chen G, Yang X, Wang H. Angew Chem, 2019, 131: 2638–2642

    Article  Google Scholar 

  18. Yandulov DV, Schrock RR. Science, 2003, 301: 76–78

    Article  CAS  PubMed  Google Scholar 

  19. Zhao J, Chen Z. J Am Chem Soc, 2017, 139: 12480–12487

    Article  CAS  PubMed  Google Scholar 

  20. Li Q, He L, Sun C, Zhang X. J Phys Chem C, 2017, 121: 27563–27568

    Article  CAS  Google Scholar 

  21. Cheng H, Ding LX, Chen GF, Zhang L, Xue J, Wang H. Adv Mater, 2018, 30: 1803694

    Article  CAS  Google Scholar 

  22. Cui X, Tang C, Zhang Q. Adv Energy Mater, 2018, 8: 1800369

    Article  CAS  Google Scholar 

  23. Zhang L, Ji X, Ren X, Luo Y, Shi X, Asiri AM, Zheng B, Sun X. ACS Sustain Chem Eng, 2018, 6: 9550–9554

    Article  CAS  Google Scholar 

  24. Cheng H, Cui P, Wang F, Ding LX, Wang H. Angew Chem Int Ed, 2019, 58: 15541–15547

    Article  CAS  Google Scholar 

  25. Guo W, Zhang K, Liang Z, Zou R, Xu Q. Chem Soc Rev, 2019, 48: 5658–5716

    Article  CAS  PubMed  Google Scholar 

  26. Deng J, Li H, Wang S, Ding D, Chen M, Liu C, Tian Z, Novoselov KS, Ma C, Deng D, Bao X. Nat Commun, 2017, 8: 14430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen P, Zhang N, Wang S, Zhou T, Tong Y, Ao C, Yan W, Zhang L, Chu W, Wu C, Xie Y. Proc Natl Acad Sci USA, 2019, 116: 6635–6640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang N, Bai Z, Fang Z, Zhang X, Xu X, Du Y, Liu L, Dou S, Yu G. ACS Mater Lett, 2019, 1: 265–271

    Article  CAS  Google Scholar 

  29. Fang Z, Wu P, Yu K, Li Y, Zhu Y, Ferreira PJ, Liu Y, Yu G. ACS Nano, 2019, 13: 14368–14376

    Article  CAS  PubMed  Google Scholar 

  30. Fang Z, Zhang A, Wu P, Yu G. ACS Mater Lett, 2019, 1: 158–170

    Article  CAS  Google Scholar 

  31. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V. Science, 2015, 347: 1246501

    Article  PubMed  CAS  Google Scholar 

  32. Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Science, 2019, 366: eaan8285

    Article  CAS  PubMed  Google Scholar 

  33. Qian Y, Liu Q, Sarnello E, Tang C, Chng M, Shui J, Li T, Pennycook SJ, Han M, Zhao D. ACS Mater Lett, 2019, 1: 37–43

    Article  CAS  Google Scholar 

  34. Liu Y, Wang N, Zhao X, Fang Z, Zhang X, Liu Y, Bai Z, Dou S, Yu G. J Mater Chem A, 2020, 8: 2843–2850

    Article  CAS  Google Scholar 

  35. Kim HS, Cook JB, Tolbert SH, Dunn B. J Electrochem Soc, 2015, 162: A5083–A5090

    Article  CAS  Google Scholar 

  36. Yang L, Li X, Ouyang Y, Gao Q, Ouyang L, Hu R, Liu J, Zhu M. ACS Appl Mater Interfaces, 2016, 8: 19987–19993

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. J Am Chem Soc, 2011, 133: 7296–7299

    Article  CAS  PubMed  Google Scholar 

  38. Chen S. Sci China Chem, 2015, 58: 433

    Article  CAS  Google Scholar 

  39. Jia Y, Zhang L, Gao G, Chen H, Wang B, Zhou J, Soo MT, Hong M, Yan X, Qian G, Zou J, Du A, Yao X. Adv Mater, 2017, 29: 1700017

    Article  CAS  Google Scholar 

  40. Rao R, Tishler D, Katoch J, Ishigami M. Phys Rev B, 2011, 84: 113406

    Article  CAS  Google Scholar 

  41. Hu Q, Li G, Liu X, Zhu B, Chai X, Zhang Q, Liu J, He C. Angew Chem Int Ed, 2019, 58: 4318–4322

    Article  CAS  Google Scholar 

  42. Cao Y, Liu H, Bo X, Wang F. Sci China Chem, 2015, 58: 501–507

    Article  CAS  Google Scholar 

  43. Wang Y, Cui X, Zhao J, Jia G, Gu L, Zhang Q, Meng L, Shi Z, Zheng L, Wang C, Zhang Z, Zheng W. ACS Catal, 2019, 9: 336–344

    Article  CAS  Google Scholar 

  44. Kötz R, Carlen M. Electrochim Acta, 2000, 45: 2483–2498

    Article  Google Scholar 

  45. Grahame DC. Chem Rev, 1947, 41: 441–501

    Article  CAS  PubMed  Google Scholar 

  46. McCrory CCL, Jung S, Peters JC, Jaramillo TF. J Am Chem Soc, 2013, 135: 16977–16987

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G. Yu acknowledges the funding support from US Department of Energy, Office of Science, Basic Energy Sciences, under Award DE-SC0019019, and Camille Dreyfus Teacher-Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongchao Bai or Guihua Yu.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Fernandez, D., Wang, N. et al. Mo2C@3D ultrathin macroporous carbon realizing efficient and stable nitrogen fixation. Sci. China Chem. 63, 1570–1577 (2020). https://doi.org/10.1007/s11426-020-9740-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9740-8

Keywords

Navigation