Skip to main content

Advertisement

Log in

Lithium-Ion Capacitors with TME Lithium Powder Pre-embedded for Tetramethylethylene Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

With tetramethylethylene (2,3-Dimethyl-2-butene, TME) as the polymer source, lithium powder (Li) was immersed to obtain highly stable lithium powder (TME-Li) coated with poly 2,3-Dimethyl-2-butene. It was pre-embedded into an electrode sheet with an intermediate carbon microsphere (MCMB)/multi-wall carbon nanotube (MWCNT)/super carbon black (SP) composite material as a negative electrode and assembled into a lithium-ion capacitor (LIC). Scanning electron microscopy and intelligent Fourier transform infrared spectroscopy were used to analyze lithium powder and electrode sheets scientifically. In addition, constant current charge–discharge (GCD) and electrochemical impedance spectroscopy were also used to analyze the electrochemical properties of the LIC. The results show that embedded TME-Li can improve the electrochemical performance of capacitors efficiently. When the current density is 50 mA g−1, the specific capacitance can reach 69.09 F g−1. Within the current density range of 50–700 mA g−1, the maximum power density is 1.02 kw kg−1, and the energy density is as high as 91.14 Wh kg−1. After 4000 constant current charge and discharge cycles, the capacitance retention rate is still above 83%, showing good electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.D. Zhuang, Y. Chen, G. Liu, P.P. Li, C.X. Zhu, E.T. Kang, and Y.X. Li, Adv. Mater. 22, 1731 (2010).

    Article  CAS  Google Scholar 

  2. D.A.J. Rand, J Solid State Electr. 15, 1579 (2011).

    Article  CAS  Google Scholar 

  3. X.Q. Yu, G.G. Wu, X. Zhao, J.F. Gao, Y.J. Di, Y. Zheng, Y.P. Daia, C.L. Lia, and J.T. Qiua, J. Asian Earth Sci. 39, 408 (2010).

  4. A. Manthiram, ACS Central Sci. 3, 1063 (2017).

    Article  CAS  Google Scholar 

  5. C.H.E.N. Xuedan, C.H.E.N. Shuoyi, Q.I.A.O. Zhijun, F.U. Guansheng, and R.U.A.N. Dianbo, Energy Storage Sci. Technol. 5, 800 (2016).

    Google Scholar 

  6. Z. Tao and J. Chen, Chin. Sci. Bull. 57, 2545 (2012).

    Article  Google Scholar 

  7. P. Simon and Y. Gogotsi, Nanosci. Technol. Collect. Rev. Nat. J. 320, 329 (2010).

    Google Scholar 

  8. A. Yoshino, Angew. Chem. Int. Ed. 51, 5798 (2012).

    Article  CAS  Google Scholar 

  9. A. Du Pasquier, I. Plitz, J. Gural, F. Badway, and G.G. Amatucci, J. Power Sources 136, 160 (2004).

    Article  Google Scholar 

  10. W. Li, F. Zhang, Y. Dou, Z. Wu, H. Liu, X. Qian, and D. Zhao, Adv. Energy Mater. 1, 382 (2011).

    Article  CAS  Google Scholar 

  11. S.R. Sivakkumar, J.Y. Nerkar, and A.G. Pandolfo, Electrochim. Acta 55, 3330 (2010).

    Article  CAS  Google Scholar 

  12. N. Böckenfeld, R.S. Kühnel, S. Passerini, M. Winter, and A. Balducci, J. Power Sources 196, 4136 (2011).

    Article  Google Scholar 

  13. D. Cericola and R. Kötz, Electrochim. Acta 72, 1 (2012).

    Article  CAS  Google Scholar 

  14. J.E. Park, S.G. Park, A. Koukitu, O. Hatozaki, and N. Oyama, Synthetic Met. 141, 265 (2004).

    Article  CAS  Google Scholar 

  15. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, and P. Simon, Nat. Energy 1, 1 (2016).

    Article  Google Scholar 

  16. J. Yan, Y. Sun, L. Jiang, Y. Tian, R. Xue, L. Hao, and B. Yi, J Renew. Sustain. Energy 5, 021404 (2013).

    Article  Google Scholar 

  17. J. Wu, D. Zhang, Y. Wang, and B. Hou, J. Power Sources 227, 185 (2013).

    Article  CAS  Google Scholar 

  18. W.H. Li, Q.Y. Yue, B.Y. Gao, Z.H. Ma, Y.J. Li, and H.X. Zhao, Chem. Eng. J. 171, 320 (2011).

    Article  CAS  Google Scholar 

  19. X. Xia, S. Deng, S. Feng, J. Wu, and J. Tu, J Mater. Chem. A. 5, 21134 (2017).

    Article  CAS  Google Scholar 

  20. S. Shen, W. Guo, D. Xie, Y. Wang, S. Deng, Y. Zhong, and J. Tu, J. Mater. Chem. A 6, 20195 (2018).

    Article  CAS  Google Scholar 

  21. J. Yang, X.Y. Zhou, J. Li, and S.J. Lou, J Cent. South Univ. T 18, 972 (2011).

    Article  CAS  Google Scholar 

  22. J.J. Ren, L.W. Su, X. Qin, M. Yang, J.P. Wei, Z. Zhou, and P.W. Shen, J. Power Sources 264, 108 (2014).

    Article  CAS  Google Scholar 

  23. S.R. Sivakkumar and A.G. Pandolfo, Electrochim. Acta 65, 280 (2012).

    Article  CAS  Google Scholar 

  24. J. Tang, D.K. Kye, and V.G. Pol, J. Power Sources 396, 476 (2018).

    Article  CAS  Google Scholar 

  25. G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi, Z. Chen, and M.M. Safont-Sempere, ACS Energy Lett. 1, 1247 (2016).

    Article  CAS  Google Scholar 

  26. K. Liu, A. Pei, H.R. Lee, B. Kong, N. Liu, D. Lin, and Y. Cui, J. Am. Chem. Soc. 139, 4815 (2017).

    Article  CAS  Google Scholar 

  27. B. Liu, Y. Zhang, G. Pan, C. Ai, S. Deng, S. Liu, and J. Tu, J. Mater. Chem. A 7, 21794 (2019).

    Article  CAS  Google Scholar 

  28. Y.M. Lee, N.S. Choi, J.H. Park, and J.K. Park, J. Power Sources 119, 964 (2003).

    Article  Google Scholar 

  29. J. Zhang, Z. Shi, and C. Wang, Electrochim. Acta 125, 22 (2014).

    Article  CAS  Google Scholar 

  30. S. Shen, X. Xia, Y. Zhong, S. Deng, D. Xie, B. Liu, and J. Tu, Adv. Mater. 31, 1900009 (2019).

    Article  Google Scholar 

  31. J. Dong, Y. Ozaki, and K. Nakashima, J Polym. Sci. Polym. Phys. 35, 507 (1997).

    Article  CAS  Google Scholar 

  32. Q. Zhang, P. Chen, X. Xie, and X. Cao, J. Appl. Polym. Sci. 113, 3027 (2009).

    Article  CAS  Google Scholar 

  33. E.J.J. Samuel and S. Mohan, Spectrochim. Acta A. 60, 19 (2004).

    Article  Google Scholar 

  34. M.I. Redondo, E.S. Blanca, M.V. Garcίa, M.A. Raso, J. Tortajada, and M.J. Gonzalez-Tejera, Synthetic Met. 122, 431 (2001).

    Article  CAS  Google Scholar 

  35. J. Merna, P. Vlček, V. Volkis, and J. Michl, Chem. Rev. 116, 771 (2016).

    Article  CAS  Google Scholar 

  36. M. Cai, X. Sun, Y. Nie, W. Chen, Z. Qiu, L. Chen, and H. Tang, NANO 12, 1750051 (2017).

    Article  CAS  Google Scholar 

  37. K. Dokko, Y. Fujita, M. Mohamedi, M. Umeda, I. Uchida, and J.R. Selman, Electrochim. Acta 47, 933 (2001).

    Article  CAS  Google Scholar 

  38. R. Kötz and M.J.E.A. Carlen, Electrochim. Acta 45, 2483 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Xiaogang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, H., Xiaogang, S., Wei, C. et al. Lithium-Ion Capacitors with TME Lithium Powder Pre-embedded for Tetramethylethylene Applications. J. Electron. Mater. 49, 4045–4052 (2020). https://doi.org/10.1007/s11664-020-08064-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08064-3

Keywords

Navigation