Skip to main content

Advertisement

Log in

Probing Gold-Doped Germanene Nanoribbons for Nanoscale Interconnects Under DFT-NEGF Framework

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gold-doped germanene nanoribbons (Au-GeNRs) are investigated for their potential as interconnects, using density functional theory combined with nonequilibrium Green’s function formalism. Various stable doping sites for both zigzag and armchair GeNRs (ZGeNR and AGeNR) are investigated. Based on formation energy (\(E_{{{\mathrm{FE}}}}\)) analysis, all considered Au-GeNRs are revealed to be thermodynamically stable. The analysis also shows that near-edge-doped ZGeNR (with \(E_{{{\mathrm{FE}}}} = -3.46\) eV) is the most stable configuration. It is shown through \(E-k\) structures and density-of-states profiles that Au-doping results in metallic GeNR irrespective of the edge states and ribbon width. To further explore the prospects for the use of Au-doped GeNR for interconnect applications, important small-signal dynamic parameters (including \(R_Q, L_K,\) and \(C_Q\)) for various doped configurations are explored. The present investigations also take into account the effect of bias voltage on \(R_Q, L_K, C_Q\). It is revealed that, with the exception of the edge-doped ZGeNR configuration, bias voltage has a prominent effect on these parameters for every configuration. Thus, edge-doped ZGeNR (with \(L_K = 4.41\) nH/\(\upmu \)m, \(C_Q = 4.21\) pF/cm) represents a potential candidate for nanoscale interconnect applications among the considered configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Carballo, W.J. Chan, P.A. Gargini, A.B. Kahng, and S. Nath, IEEE 32nd International Conference on Computer Design (ICCD), Seoul (2014), p. 139.

  2. M. Chhowalla, D. Jena, and H. Zhang, Nat. Rev. Mat. 1, 16052 (2016).

    Article  CAS  Google Scholar 

  3. W. Cao, J. Kang, D. Sarkar, W. Liu, and K. Banerjee, IEEE Trans. Elect. Dev. 62, 3459 (2015).

    Article  CAS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  5. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  6. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Science 320, 1308 (2008).

    Article  CAS  Google Scholar 

  7. Y. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim, Nature 438, 201 (2005).

    Article  CAS  Google Scholar 

  8. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  9. D. Pacilé, J.C. Meyer, Ö. Girit, and A. Zettl, Appl. Phys. Lett. 92, 133107-1-3 (2008).

  10. A. Carvalho, M. Wang, X. Zhu, A.S. Rodin, H. Su, and A.H. Neto, Nat. Rev. Mat. 1, 16061 (2016)

    Article  CAS  Google Scholar 

  11. K. Takeda and K. Shiraishi, Phys. Rev. B 50, 14916 (1994).

    Article  CAS  Google Scholar 

  12. S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

    Article  CAS  Google Scholar 

  13. E. Bianco, S. Butler, S. Jiang, O.D. Restrepo, W. Windl, and J.E. Goldberger, ACS Nano 7, 4414 (2013).

    Article  CAS  Google Scholar 

  14. Y. Du, J. Zhuang, J. Wang, Z. Li, H. Liu, J. Zhao, X. Xu, H. Feng, L. Chen, K. Wu, X. Wang, and S.X. Dou, Sci. Adv. 2(7), e1600067 (2016).

    Article  Google Scholar 

  15. J. Zhuang, N. Gao, Z. Li, X. Xu, J. Wang, J. Zhao, S.X. Dou, and Y. Du, ACS Nano 11 (4), 3553 (2017).

    Article  CAS  Google Scholar 

  16. J. Zhuang, C. Liu, Z. Zhao, Z. Li, G. Casillas, H. Feng, X. Xu, J. Wang, W. Hao, X. Wang, S.X. Dou, Z. Hu, and Y. Du, Adv. Sci. 5 (7), 1800207 (2018).

    Article  Google Scholar 

  17. C-C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011)

    Article  Google Scholar 

  18. M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V.V. Afanaśev, and A. Stesmans, Appl. Phys. Lett. 98, 223107 (2011).

    Article  Google Scholar 

  19. S. Cahangirov, M. Topsakal, and S. Ciraci, Phys. Rev. Lett. 81, 195120 (2010).

    Google Scholar 

  20. Y. Ding and Y. Wang, Appl. Phys. Lett. 100, 083102 (2012).

    Article  Google Scholar 

  21. Y.-L. Song, Y. Zhang, Y.-L. Zhang, and D.-B. Lu, Appl. Surf. Sci. 256, 6313 (2010).

    Article  CAS  Google Scholar 

  22. W. Xia, W. Hu, Z. Li, and J. Yang, Phys. Chem. Chem. Phys. 16, 22495 (2014).

    Article  CAS  Google Scholar 

  23. V. Sharma, P. Srivastava, and N.K. Jaiswal, App. Surf. Sci. 396, 1352 (2017).

    Article  CAS  Google Scholar 

  24. Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, and J. Lu, Nano Lett. 12 (1), 113 (2011).

    Article  Google Scholar 

  25. Y. Du, J. Zhuang, H. Liu, X. Xu, S. Eilers, K. Wu, P. Cheng, J. Zhao, X. Pi, K. W. See, G. Peleckis, X. Wang, and S.X. Dou, ACS Nano 8 (10), 10019 (2014).

    Article  CAS  Google Scholar 

  26. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, and D. Akinwande, Nat. Nanotechnol. 10, 227 (2015).

    Article  CAS  Google Scholar 

  27. R. Vargas-Bernal, The Next generation of nanomaterials for designing analog integrated circuits, in Analog Circuits: Fundamentals, Synthesis and Performance(Nova Science Publishers, USA, Chapter 1, pp. 321, 2nd Quarter, April 2017).

  28. A.H. Bayani, D. Dideban, M. Vali, and N. Moezi, Semicond. Sci. Technol. 31 (4), 045009-1-7 (2016).

  29. A.H. Bayani, D. Dideban, and N. Moezi, J. Comput. Electr. 15 (2), 381 (2016).

    Article  CAS  Google Scholar 

  30. A.H. Bayani, D. Dideban, and N. Moezi, Superlattices Microstruct. 100, 198 (2016).

    Article  CAS  Google Scholar 

  31. H.F. Nejad, D. Dideban, A. Ketabi, D. Dideban, M. Vali, A.H. Bayani, and H. Heidari, Mater. Sci. Semicond. Process. 80, 18 (2018).

    Article  CAS  Google Scholar 

  32. N. Magen, A. Kolodny, U. Weiser, and N. Shamir, Proceedings of the 2004 International Workshop on System Level Interconnect Prediction (SLIP04) 966750, pp. 7–13 (2004).

  33. K. Banerjee and A. Mehrotra, IEEE Trans. Electron. Dev. 49(11), 2001 (2002).

    Article  Google Scholar 

  34. C. Xu, H. Li, and K. Banerjee, IEEE Trans. Electron Dev. 56 (8), 1567 (2009).

    Article  CAS  Google Scholar 

  35. H. Li, C. Xu, and K. Banerjee, IEEE Des. Test Comput. 27 (4), 20 (2010).

    Article  Google Scholar 

  36. S. Yamacli, Comp. Mat. Sci. 141, 353 (2018).

    Article  CAS  Google Scholar 

  37. V. Sharma, P. Srivastava, and N.K. Jaiswal, IEEE Trans. Electron Dev. 65(9), 3893 (2018).

    Article  CAS  Google Scholar 

  38. L. Banerjee, A. Sengupta, and H. Rahaman, IEEE Trans. Electron Dev. 66(1), 664 (2019).

    Article  CAS  Google Scholar 

  39. M. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G.L. Lay, New J. Phys. 16, 095002 (2014).

    Article  Google Scholar 

  40. M. Dávila and G.L. Lay, Sci. Rep. 6, 20714 (2016).

    Article  Google Scholar 

  41. Atomistix ToolKit Virtual NanoLab (ATK-VNL), QuantumWise Simulator [Online]. Available: http://www.quantumwise.com/, version 2014.1.

  42. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  43. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865-1-4 (1996).

  44. N.K. Jaiswal and P. Srivastava, IEEE. Trans. Nanotechnol. 12, 685 (2013).

    Article  CAS  Google Scholar 

  45. Y. Ding, Y. Wang, Appl. Phys. Lett. 102, 143115 (2013).

    Article  Google Scholar 

  46. R. Vargas-Bernal, Performance Analysis of Interconnects based on Carbon Nanotubes for AMS/RF IC Design, (IGI Global, USA, Chapter 14, pp. 336363, 2015)

  47. D. Das and H. Rahaman, Carbon Nanotube and Graphene Nanoribbon Interconnects, 1st edn. (CRC Press, Boca Raton, 2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 230 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Srivastava, P. Probing Gold-Doped Germanene Nanoribbons for Nanoscale Interconnects Under DFT-NEGF Framework. J. Electron. Mater. 49, 3938–3946 (2020). https://doi.org/10.1007/s11664-020-08104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08104-y

Keywords

Navigation