Skip to main content

Advertisement

Log in

Facile Synthesis of NiMoO4 Nanorod Electrode for Aqueous Hybrid Supercapacitor with High Energy Density

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

NiMoO4 nanorods (NRs) were successfully fabricated on Ni foam with robust adhesion via a simple and cost-effective hydrothermal treatment, followed by a calcined process. In a three-electrode configuration with 3 mol L−1 KOH aqueous solution. The NiMoO4 NRs supported on Ni foam as working electrodes achieve a high specific capacity of 1320 C g−1 at a charge and discharge current density of 2 mA cm−2, and a desirable rate capability (884 C g−1 even at 10 mA cm−2) and a superior cycling ability with 88% capacity retention after 4000 cycles at 10 mA cm−2. To enhance the energy density and enlarge the voltage window, the aqueous hybrid supercapacitor has subsequently been constructed by employing the NiMoO4 and activated carbon electrodes as positive and negative electrodes, respectively, which delivered a high energy density of 52 Wh kg−1 at a power density of 725 W kg−1. Impressively, the device indicates a long-term cycling stability with capacitance retention of 123% even after 9000 cycles in aa safe voltage range from 0 V to 1.45 V. These results definitely imply the promising prospect of NiMoO4 NR electrodes for application in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Zuo, J. Chen, W. Liu, X. Li, Y. Kong, C. Yao, and Y. Fu, Carbon 129, 199 (2018).

    Article  CAS  Google Scholar 

  2. S. Rahimi, S. Shahrokhian, and H. Hosseini, J. Electroanal. Chem. 810, 78 (2018).

    Article  CAS  Google Scholar 

  3. H. Yuan, L. Kong, T. Li, and Q. Zhang, Chin. Chem. Lett. 28, 2180 (2017).

    Article  CAS  Google Scholar 

  4. W. Xiao, W. Zhou, H. Yu, Y. Pu, Y. Zhang, and C. Hu, Electrochim. Acta 264, 1 (2018).

    Article  CAS  Google Scholar 

  5. Y. Wang, Y. Song, and Y. Xia, Chem. Soc. Rev. 45, 5925 (2016).

    Article  CAS  Google Scholar 

  6. M.R. Lukatskaya, B. Dunn, and Y. Gogotsi, Nat. Commun. 7, 12647 (2016).

    Article  Google Scholar 

  7. E. Samuel, P.U. Londhe, B. Joshi, M.W. Kim, K. Kim, M.T. Swihart, N.B. Chaure, and S.S. Yoon, J. Alloys Comp. 741, 781 (2018).

    Article  CAS  Google Scholar 

  8. S. Kumar, M. Nehra, D. Kedia, N. Dilbaghi, K. Tankeshwar, and K.H. Kim, Prog. Energy Combust. Sci. 64, 219 (2018).

    Article  Google Scholar 

  9. X. Meng, Q. Cao, L. Jin, X. Zhang, S. Gong, and P. Li, J. Mater. Sci. 52, 760 (2016).

    Article  Google Scholar 

  10. H. Li, J. Li, A. Thomas, and Y. Liao, Adv. Funct. Mater. 29, 1904785 (2019).

    Article  Google Scholar 

  11. A. González, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sust. Energy Rev. 58, 1189 (2016).

    Article  Google Scholar 

  12. S.J. Uke, V.P. Akhare, D.R. Bambole, A.B. Bodade, and G.N. Chaudhari, Front. Mater. 4, 1 (2017).

    Article  Google Scholar 

  13. W. Wang, J. Qi, Y. Sui, Y. He, Q. Meng, F. Wei, and Y. Jin, J. Nanosci. Nanotechnol. 18, 5600 (2018).

    Article  CAS  Google Scholar 

  14. X. Tian, X. Li, T. Yang, K. Wang, H. Wang, Y. Song, Z. Liu, and Q. Guo, Appl. Surf. Sci. 434, 49 (2018).

    Article  CAS  Google Scholar 

  15. F. Yang, W. Li, and B. Tang, Chem. Eng. J. 334, 2021 (2018).

    Article  CAS  Google Scholar 

  16. D. Guo, Y. Luo, X. Yu, Q. Li, and T. Wang, Nano Energy 8, 174 (2014).

    Article  CAS  Google Scholar 

  17. B. Senthilkumar, K.V. Sankar, R.K. Selvan, M. Danielleb, and M. Manickam, RSC Adv. 3, 352 (2013).

    Article  CAS  Google Scholar 

  18. S. Wang, Z. Huang, R. Li, X. Zheng, F. Lu, and T. He, Electrochim. Acta 204, 160 (2016).

    Article  CAS  Google Scholar 

  19. X. Pan, F. Ji, Q. Xia, X. Chen, H. Pan, S.N. Khisro, S. Luo, M. Chen, and Y. Zhang, Electrochim. Acta 282, 905 (2018).

    Article  CAS  Google Scholar 

  20. T. Liu, H. Chai, D. Jia, Y. Su, T. Wang, and W. Zhou, Electrochim. Acta 180, 998 (2015).

    Article  CAS  Google Scholar 

  21. C. Chen, D. Yan, X. Luo, W. Gao, G. Huang, Z. Han, Y. Zeng, and Z. Zhu, A.C.S. Appl. Mater. Interfaces 10, 4662 (2018).

    Article  CAS  Google Scholar 

  22. B. Senthilkumar and R.K. Selvan, J. Colloid Interface Sci. 426, 280 (2014).

    Article  CAS  Google Scholar 

  23. R. Xu, J. Lin, J. Wu, M. Huang, L. Fan, Z. Xu, and Z. Song, Appl. Surf. Sci. 463, 721 (2019).

    Article  CAS  Google Scholar 

  24. D. Cai, B. Liu, D. Wang, Y. Liu, L. Wang, H. Li, Y. Wang, C. Wang, Q. Li, and T. Wang, Electrochim. Acta 125, 294 (2014).

    Article  CAS  Google Scholar 

  25. X. Pan, X. Chen, Y. Li, and Z. Yu, Electrochim. Acta 182, 1101 (2015).

    Article  CAS  Google Scholar 

  26. Y. Cui, J. Zhang, C. Jin, Y. Liu, W. Luo, and W. Zheng, Small 15, 1804318 (2019).

    Google Scholar 

  27. J. Zhang, Z. Zheng, G. Wu, and Q. Hua, J. Alloys Compd. 785, 725 (2019).

    Article  CAS  Google Scholar 

  28. D. Zhou, P. Cheng, J. Luo, W. Xu, J. Li, and D. Yuan, J. Mater. Sci. 52, 13909 (2017).

    Article  CAS  Google Scholar 

  29. Y. Zhang, J. Xu, Y. Zheng, Y. Zhang, X. Hu, and T. Xu, Nanoscale Res. Lett. 12, 412 (2017).

    Article  Google Scholar 

  30. M.C. Liu, L. Kang, L.B. Kong, C. Lu, X.J. Ma, X.M. Li, and Y.C. Luo, RSC Adv. 3, 6472 (2013).

    Article  CAS  Google Scholar 

  31. L. Huang, J. Xiang, W. Zhang, C. Chen, H. Xu, and Y. Huang, J. Mater. Chem. A 3, 22081 (2015).

    Article  CAS  Google Scholar 

  32. L. Wang, Y. Ouyang, X. Jiao, X. Xia, W. Lei, and Q. Hao, Chem. Eng. J. 334, 1 (2018).

    Article  CAS  Google Scholar 

  33. C.S. Dai, P.Y. Chien, J.Y. Lin, S.W. Chou, W.K. Wu, P.H. Li, K.Y. Wu, and T.W. Lin, ACS Appl. Mater. Interfaces 5, 12168 (2013).

    Article  CAS  Google Scholar 

  34. J.A.A. Mehrez, K.A. Owusu, Q. Chen, L. Li, K. Hamwi, W. Luo, and L. Mai, Inorg. Chem. Front. 6, 857 (2019).

    Article  CAS  Google Scholar 

  35. H. Gao, F. Wu, X. Wang, C. Hao, and C. Ge, Int. J. Hydrog. Energy 43, 18349 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the National Nature Science Foundation of China (61674059), the Science and Technology Planning Project of Guangdong Province (2015A010103012, 2015B010132009, 2017B090904021), the Science and Technology Planning Project of Guangzhou City (201804010399), and the Innovative Project of Education Department of Guangdong Province (2017KTSCX050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinman Chen or Qingbing Zha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, F., Pan, X., Qin, J. et al. Facile Synthesis of NiMoO4 Nanorod Electrode for Aqueous Hybrid Supercapacitor with High Energy Density. J. Electron. Mater. 49, 4010–4017 (2020). https://doi.org/10.1007/s11664-020-08116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08116-8

Keywords

Navigation