Skip to main content
Log in

Optimization of protoplast isolation from the gametophytes of brown alga Undaria pinnatifida using response surface methodology

  • 23rd INTERNATIONAL SEAWEED SYMPOSIUM, JEJU
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The microscopic gametophytic phase of the commercial brown alga, Undaria pinnatifida, can be used for several applications, including the production of bioactive compounds, aquaculture and as germplasm bank. Therefore, gametophytes are good candidates for cellular biotechnology techniques, many of which rely on protoplasts (“naked” living plant cells). This study reports on the optimization of protoplast yield from male and female gametophytes of U. pinnatifida using different mixtures of commercial enzymes and chelation pre-treatment. Key conditions for achieving the highest protoplast yield, such as enzyme combinations, chelation pre-treatment, growth, temperature, incubation time, pH and osmolarity, were investigated. Protoplast isolation conditions were modelled by using response surface methodology (RSM) via Box-Behnken design (BBD) and subsequently experimentally verified in its predictability of protoplast production. The enzyme composition with 1% cellulase RS, 2 U mL−1 alginate lyase and 1% driselase with chelation pre-treatment, at 2481–2591 mOsm L−1 H2O and adjusted to pH 5.8–6.1, produced the highest protoplast yields of 3.12 ± 0.51 × 106 protoplasts g−1 fresh weight for male gametophyte and 2.11 ± 0.08 × 106 for female gametophyte when incubated at 20 °C for 4–7 h using cultures at mid or early exponential phase, respectively. These conditions also gave high amounts of protoplasts from other strains of Korea. Our results show the effectiveness of commercial enzymes combined with chelation pre-treatment in protoplast isolation and RSM with BBD is a useful method for rapidly producing the higher yields of protoplasts from brown alga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  • Anderson MJ, Whitcomb PJ (2017) RSM simplified: optimizing processes using response surface methods for design of experiments, 2nd edn. Productivity Press, New York

    Book  Google Scholar 

  • Baweja P, Sahoo D, García-Jimenez P, Robaina RR (2009) Seaweed tissue culture as applied to biotechnology: problems, achievements and prospects. Phycol Res 57:45–58

    Article  Google Scholar 

  • Benet H, Ar Gall E, Asensi A, Kloareg B (1997) Protoplast regeneration from gametophytes and sporophytes of some species in the order Laminariales (Phaeophyceae). Protoplasma 199:39–48

    Article  Google Scholar 

  • Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice, a revised edition. Elsevier, Amsterdam

    Google Scholar 

  • Björk M, Ekman P, Wallin A, Pedersén M (1990) Effects of growth rate and other factors on protoplast yield from four species of Gracilaria (Rhodophyta). Bot Mar 33:433–439

    Article  Google Scholar 

  • Björk M, Gómez-Pinchetti JL, García-Reina G, Pedersén M (1992) Protoplast isolation from Ulva rigida (Chlorophyta). Br Phycol J 27:401–407

    Article  Google Scholar 

  • Burns A, Oliveira L, Bisalputra T (1982a) A morphological study of bud initiation in the brown alga Sphacelaria furcigera. New Phytol 92:309–325

    Article  Google Scholar 

  • Burns A, Oliveira L, Bisalputra T (1982b) A histochemical study of bud initiation in the brown alga Sphacelaria furcigera. New Phytol 92:297–307

    Article  Google Scholar 

  • Burns AR, Oliveira L, Bisalputra T (1984) A cytochemical study of cell wall differentiation during bud initiation in the brown alga Sphacelaria furcigera. Bot Mar 27:45–54

    Article  Google Scholar 

  • Burris KP, Dlugosz EM, Collins AG, Stewart CN, Lenaghan SC (2016) Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Rep 35:693–704

    Article  CAS  PubMed  Google Scholar 

  • Butler DM, Ostgaard K, Boyen C, Evans LV, Jensen A, Kloareg B (1989) Isolation conditions for high yields of protoplasts from Laminaria saccharina and L. digitata (Phaeophyceae). J Exp Bot 40:1237–1246

    Article  CAS  Google Scholar 

  • Choi HG, Kim YS, Lee SJ, Park EJ, Nam KW (2005) Effects of daylength, irradiance and settlement density on the growth and reproduction of Undaria pinnatifida gametophytes. J Appl Phycol 17:423–430

    Article  Google Scholar 

  • Cocking EC (1960) A method for isolation of plant protoplasts and vacuoles. Nature 187:927–929

    Article  Google Scholar 

  • Coelho SM, Scornet D, Rousvoal S, Peters N, Dartevelle L, Peters AF, Cock JM (2012) Isolation and regeneration of protoplast from Ectocarpus. Cold Spring Harbor Protoc 2012:361–364

    Google Scholar 

  • Cronshaw J, Myers A, Preston RD (1958) A chemical and physical investigation of the cell walls of some marine algae. Biochim Biophys Acta 27:89–103

    Article  CAS  PubMed  Google Scholar 

  • Dawson PL, Martinez-Dawson R (1998) Using response surface analysis to optimize the quality of ultrapasteurized liquid whole egg. Poult Sci 77:468–474

    Article  CAS  PubMed  Google Scholar 

  • Destombe C, Oppliger V (2011) Male gametophyte fragmentation in Laminaria digitata: a life history strategy to enhance reproductive success. Cah Biol Mar 52:1–9

    Google Scholar 

  • Dwiranti F, Hiraoka M, Taguchi T, Konishi Y, Tominaga M, Tominaga A (2012) Effects of gametophytes of Ecklonia kurome on the levels of glucose and triacylglycerol in db/db, prediabetic C57BL/6J and IFN-γ KO mice. Int J Biomed Sci 8:64–75

    PubMed  PubMed Central  Google Scholar 

  • Field A (2009) Discovering statistics using SPSS, 3rd edn. Sage, Los Angeles

    Google Scholar 

  • Formo K, Aarstad OA, Skjåk-Bræk G, Strand BL (2014) Lyase-catalyzed degradation of alginate in the gelled state: effect of gelling ions and lyase specificity. Carbohydr Polym 110:100–106

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Zhang Y, Wang H, Qin S (2005) Suspension culture of gametophytes of transgenic kelp in a photobioreactor. Biotechnol Lett 27:1025–1028

    Article  CAS  PubMed  Google Scholar 

  • Gómez Pinchetti JL, Björk M, Pedersén M, García Reina G (1993) Factors affecting protoplast yield of the carrageenophyte Solieria filiformis (Gigartinales, Rhodophyta). Plant Cell Rep 12:541–545

    Google Scholar 

  • Gupta V, Kumar M, Kumari P, Reddy CRK, Jha B (2011) Optimization of protoplast yields from the red algae Gracilaria dura (C. Agardh) J. Agardh and G. verrucosa (Huds.) Papenfuss. J Appl Phycol 23:209–218

    Article  Google Scholar 

  • Huang L, Zhou J, Li X, Peng Q, Lu H, Du Y (2013) Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. J Ind Microbiol Biotechnol 40:113–122

    Article  PubMed  CAS  Google Scholar 

  • Huddy SM, Meyers AE, Vernon EC (2013) Protoplast isolation optimization and regeneration of cell wall in Gracilaria gracilis (Gracilariales, Rhodophyta). J Appl Phycol 25:433–443

    Article  CAS  Google Scholar 

  • Inoue A, Mashino C, Kodama T, Ojima T (2011) Protoplast preparation from Laminaria japonica with recombinant alginate lyase and cellulase. Mar Biotechnol 13:256–263

    Article  CAS  Google Scholar 

  • Kloareg B, Polne-Fuller M, Gibor A (1989) Mass production of viable protoplasts from Macrocystis pyrifera. Plant Sci 62:105–112

    Article  Google Scholar 

  • Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Rev 26:259–315

    Google Scholar 

  • Krishnaiah D, Bono A, Sarbatly R, Nithyanandam R, Anisuzzaman SM (2015) Optimisation of spray drying operation conditions of Morinda citrifolia L. fruit extract using response surface methodology. J King Saud Univ Eng Sci 27:26–36

    Google Scholar 

  • Kuwano K, Kono S, Jo Y-H, Shin J-A, Saga N (2004) Cryopreservation of the gametophytic cells of Laminariales (Phaeophyta) in liquid nitrogen. J Phycol 40:606–610

    Article  Google Scholar 

  • Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVA. Front Psychol 4:863

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee W, Marszalek PE, Zeng X, Yang W (2012) Mechanics of polysaccharides. In: Duwez AS, Willet N (eds) Molecular manipulation with atomic force microscopy. CRC Press, Boca Raton, pp 83–128

    Google Scholar 

  • Matsumura W, Yasuj H, Yamamoto H (2001) Successful sporophyte regeneration from protoplasts of Undaria pinnatifida (Laminariales, Phaeophyceae). Phycologia 40:10–20

    Article  Google Scholar 

  • Mejjad M, Loiseaux-de-Goër S, Ducreux G (1992) Protoplast isolation, development, and regeneration in different strains of Pilayella littoralis (L.) Kjellm. (Phaeophyceae). Protoplasma 169:42–48

    Article  Google Scholar 

  • Mori K, Ooi T, Hiraoka M, Oka N, Hamada H, Tamura M, Kusumi T (2004) Fucoxanthin and its metabolites in edible brown algae cultivated in deep seawater. Mar Drugs 2:63–72

    Article  CAS  PubMed Central  Google Scholar 

  • Morita T, Kurashima A, Maegawa M (2003) Temperature requirements for the growth and maturation of the gametophytes of Undaria pinnatifida and U. undarioides (Laminariales, Phaeophyceae). Phycol Res 51:154–160

    Google Scholar 

  • Mussio I, Rusig A-M (2006) Isolation of protoplasts from Fucus serratus and F. vesiculosus (Fucales, Phaeophyceae): factors affecting protoplast yield. J Appl Phycol 18:733–740

    Article  Google Scholar 

  • Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Nakagawa H, Tanaka H, Oba T, Ogura N, Iizuka M (1985) Callus formation from protoplasts of cultured Spinacia oleracea cells. Plant Cell Rep 4:148–150

    Article  CAS  PubMed  Google Scholar 

  • Park E, Cho M, Ki C-S (2009) Correct use of repeated measures analysis of variance. Korean J Lab Med 29:1–9

    PubMed  Google Scholar 

  • R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 9 Nov 2016

  • Rezazadeh R, Niedz RP (2015) Protoplast isolation and plant regeneration of guava (Psidium guajava L.) using experiments in mixture-amount design. Plant Cell Tissue Organ Cult 122:585–604

    Article  CAS  Google Scholar 

  • Rorrer GL, Modrell J, Zhi C, Yoo H-D, Nagle DN, Gerwick WH (1995) Bioreactor seaweed cell culture for production of bioactive oxylipins. J Appl Phycol 7:187–198

    Article  CAS  Google Scholar 

  • Rorrer GL, Cheney DP (2004) Bioprocess engineering of cell and tissue cultures for marine seaweeds. Aquac Eng 32:11–41

    Article  Google Scholar 

  • Reddy CRK, Dipakkore S, Kumar GR, Jha B, Cheney DP, Fujita Y (2006) An improved enzyme preparation for rapid mass production of protoplasts as seed stock for aquaculture of macrophytic marine green algae. Aquaculture 260:290–297

    Article  CAS  Google Scholar 

  • Reddy CRK, Gupta MK, Mantri VA, Bhavanath J (2008) Seaweed protoplast: status, biotechnological perspectives and needs. J Appl Phycol 20:619–632

    Article  CAS  Google Scholar 

  • Redmond S, Green L, Yarish C, Kim J, Neefus C (2014) New England seaweed culture handbook-nursery systems. Connecticut Sea Grant CTSG-14-01. Available from: http://seagrant.uconn.edu/publications/aquaculture/handbook.pdf. Accessed Jul 7, 2014

  • Salmeán AA, Duffieux D, Harholt J, Qin F, Michel G, Czjzek M, Willats WGT, Hervé C (2017) Insoluble (1→3),(1→4)-β-D-glucan is a component of cell walls in brown algae (Phaeophyceae) and is masked by alginates in tissues. Sci Rep 7:2880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sellke T, Bayarri MJ, Berger JO (2001) Calibration of p values for testing precise null hypotheses. Am Stat 55:62–71

    Article  Google Scholar 

  • Shahin MM (1972) Relationship between yield of protoplast and growth phase in Saccharomyces. J Bacteriol 110:769–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SpecialChem—The universal selection source: cosmetics ingredients. Available online: https://cosmetics.specialchem.com/product/i-seppic-ephemer. Accessed on: 6 December 2018

  • Strauss A, Potrykus I (1980) Callus formation from protoplasts of cell suspension cultures of Rosa ‘Paul’s Scarlet’. Physiol Plant 48:15–20

    Article  Google Scholar 

  • Sullivan GM, Feinn R (2012) Using effect size-or why the P value is not enough. J Grad Med Educ 4:279–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Kuma K, Kudo I, Matsunaga K (1995) Iron requirement of the brown macro algae Laminaria japonica, Undaria pinnatifida (Phaeophyta) and the crustose coralline alga Lithophyllum yessoense (Rhodophyta), and their competition in the northern Japan Sea. Phycologia 34:201–205

    Article  Google Scholar 

  • Thayer SS (1985) Protoplasts for compartmentation studies. In: Linskens HF, Jackson JF (eds) Cell components. Springer, Berlin, pp 54–65

    Chapter  Google Scholar 

  • Thibault J-F, Rouau X (1990) Studies on enzymic hydrolysis of polysaccharides in sugar beet pulp. Carbohydr Polym 13:1–16

    Article  CAS  Google Scholar 

  • Varvarigos V, Katsaros C, Galatis B (2004) Radial F-actin configurations are involved in polarization during protoplast germination and thallus branching of Macrocystis pyrifera. Phycologia 43:693–702

    Article  Google Scholar 

  • Wang B, Zhang E, Gu Y, Ning S, Wang Q, Zhou J (2011) Cryopreservation of brown algae gametophytes of Undaria pinnatifida by encapsulation-vitrification. Aquaculture 317:89–93

    Article  Google Scholar 

  • Wang L, Park Y-J, Jeon Y-J, Ryu BM (2018) Bioactivities of the edible brown seaweed, Undaria pinnatifida: a review. Aquaculture 495:873–880

    Article  CAS  Google Scholar 

  • Wei X, Song X, Dong D, Keyhani NO, Lao L, Zang X, Dong L, Gu Z, Fu D, Liu X, Qiu J, Guan X (2016) Efficient production of Aschersonia placenta protoplasts for transformation using optimization algorithms. Can J Microbiol 62:579–587

    Article  CAS  PubMed  Google Scholar 

  • Wu S (1988) Isolation and culture of protoplasts from Undaria pinnatifida (Harv.) Suringar. J Ocean Univ China 18:57–65

    Google Scholar 

  • Wu C, Li D, Liu H, Peng G, Liu J (2004) Mass culture of Undaria gametophyte clones and their use in sporeling culture. Hydrobiologia 512:153–156

    Article  Google Scholar 

  • Xiaoke H, Xiaolu J, Huashi G (2003) Isolation of protoplast from Undaria pinnatifida by alginate lyase digestion. J Ocean Univ China 2:58–61

    Article  Google Scholar 

  • Xu Z, Li D, Hu H, Tianwei T (2005) Growth promotion of vegetative gametophytes of Undaria pinnatifida by blue light. Biotechnol Lett 27:1467–1475

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka R, Akiyama K (1993) Cultivation and utilization of Undaria pinnatifida (wakame) as food. J Appl Physiol 5:249–253

    Google Scholar 

  • Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb (II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J Hazard Mater 171:551–562

    Article  CAS  PubMed  Google Scholar 

  • Zha X, Kloareg B (1996) Gametophyte protoplast culture of an edible alga Undaria pinnatifida. J Anhui Agric Univ 23:602–605 (in Chinese)

    Google Scholar 

Download references

Funding

This study was supported by a research grant from Chosun University 2019 to T.O. Cho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Oh Cho.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila-Peltroche, J., Won, B.Y. & Cho, T.O. Optimization of protoplast isolation from the gametophytes of brown alga Undaria pinnatifida using response surface methodology. J Appl Phycol 32, 2233–2244 (2020). https://doi.org/10.1007/s10811-020-02095-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02095-3

Keywords

Navigation