Skip to main content
Log in

A morphological approach to piecewise constant active contour model incorporated with the geodesic edge term

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Traditional level set-based image segmentation method has to solve the level set evolution equation which is the Euler–Lagrange equation of the energy functional defined on the image domain. Solving level set evolution equation is very time-consuming, and reinitialization is usually needed. The level set evolution equation can also be solved by mathematical morphology. The morphological implementation is very simple, fast and stable. The piecewise constant active contour model incorporated with the geodesic edge term is a hybrid active contour model which combines two active contour models which are active contour model without edges and geodesic active contour model. In this paper, the mathematical morphology-based level set evolution method is applied to the piecewise constant active contour model incorporated with the geodesic edge term. The curvature morphological operator is also improved. Experimental results show that, compared with the original piecewise constant active contour model incorporated the geodesic edge term, the new mathematical morphology-based model can segment images more accurately and there are significant gains in simplicity, speed and stability. The new mathematical morphology-based model is also compared to morphological piecewise constant active contour model, morphological geodesic active contour model, traditional piecewise constant active contour model and two other active contour models. Results show that the proposed method gets the segmentation result with faster speed and higher accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst., Man, Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  2. Pal, N.R.: On minimum cross-entropy thresholding. Pattern Recogn. 29(4), 575–580 (1996)

    Article  MathSciNet  Google Scholar 

  3. Mumford, D., Shah, J.: Optimal approximations of piecewise smooth functions and associated variational problems. Commum. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  4. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  Google Scholar 

  6. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE T. Pattern Anal. 22(3), 266–280 (2000)

    Article  Google Scholar 

  7. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis. 46(3), 223–247 (2002)

    Article  Google Scholar 

  8. Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. Vis. Commun. Image R. 13(1–2), 249–268 (2002)

    Article  Google Scholar 

  9. Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE T. Pattern Anal. 24(12), 1565–1578 (2002)

    Article  Google Scholar 

  10. Xie, X., Mirmehdi, M.: MAC: magnetostatic active contour model. IEEE T. Pattern Anal. 30(4), 632–646 (2008)

    Article  Google Scholar 

  11. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE T. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  12. Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image R. 11(2), 130–141 (2000)

    Article  Google Scholar 

  13. Li, C., Kao, C., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE T. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  14. Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE T. Image Process. 20(7), 2007–2016 (2011)

    Article  MathSciNet  Google Scholar 

  15. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28, 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  16. Catte, F., Dibos, F., Koepfler, G.: A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets. SIAM J. Numer. Anal. 32(6), 1895–1909 (1995)

    Article  MathSciNet  Google Scholar 

  17. Neila, P.M., Baumela, L., Alvarez, L.: A morphological approach to curvature-based evolution of curves and surfaces. IEEE T. Pattern Anal. 36(1), 2–17 (2014)

    Article  Google Scholar 

  18. van den Boomgaard, R., Smeulders, A.: The morphological structure of images: the differential equations of morphological scale-space. IEEE T. Pattern Anal. 16(11), 1101–1113 (1994)

    Article  Google Scholar 

  19. Estellers, V., Zosso, D., Bresson, X., Thiran, J.P.: Harmonic active contours. IEEE T. Image Process. 23(1), 69–82 (2014)

    Article  MathSciNet  Google Scholar 

  20. Kim, W., Kim, C.: Active contours driven by the salient edge energy model. IEEE T. Image Process. 22(4), 1667–1673 (2013)

    Article  MathSciNet  Google Scholar 

  21. Song, Y., Wu, Y., Bi, S.: Satellite remote sensing cloud image segmentation using edge corrected CV model. Acta Opt. Sin. 34(9) (2014) 0901004-1-8

  22. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE T. Pattern. Anal. 12(7), 629–639 (1990)

    Article  Google Scholar 

  23. Weickert, J., Romeny, B.M.T.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE T. Image Process. 7(3), 398–410 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Yellow River Sediment Key Laboratory of Ministry of Water Resources under Grant 2014006; the Key Laboratory of Rivers and Lakes Governance and Flood Protection of Yangtse River Water Conservancy Committee under Grant CKWV2013225/KY; and the State Key Laboratory of Urban Water Resource and Environment under Grant ES201409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Yiquan, W. A morphological approach to piecewise constant active contour model incorporated with the geodesic edge term. Machine Vision and Applications 31, 28 (2020). https://doi.org/10.1007/s00138-020-01083-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-020-01083-4

Keywords

Navigation