Skip to main content
Log in

Role of vector channel in different classes of (non) magnetized neutron stars

  • Regular Article -Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We study how the magnetic field and non-standard vector channels affect hadronic, quark and hybrid stars. In the hadronic phase, we use the QHD model, with its standard \(\sigma \omega \rho \) mesons, and compare the results with the ones obtained with the inclusion of the strangeness hidden \(\phi \) meson. In the quark phase, we use the standard SU(3) NJL and compare the results with the version that takes into account the vector channel \(G_v({\bar{\psi }}\gamma ^\mu \psi )\). Magnetic fields are taken into account via chaotic magnetic field approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analysed during this study are included in this published article.]

References

  1. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarf and Neutron Stars , Wiley, New York, USA (1983)

  2. C. Thompson, R.C. Duncan, Mon. Not. R. Astron. Soc. 275, 255 (1995)

    ADS  Google Scholar 

  3. C. Thompson, R.C. Duncan, Atrophys. J. 473, 322 (1996)

    ADS  Google Scholar 

  4. S. Mereghetti, Braz. J. Phys. 43, 356 (2013)

    ADS  Google Scholar 

  5. S.A. Olausen, V.M. Kaspi, Astrophys. J. Supp. 212, 6 (2014)

    ADS  Google Scholar 

  6. B.D. Serot, Rep. Prog. Phys. 55, 1855 (1992)

    ADS  Google Scholar 

  7. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    ADS  Google Scholar 

  8. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 33, 374 (1939)

    ADS  Google Scholar 

  9. Fortin et al, Phys. Rev. C 95, 065803 (2017)

  10. Oertel et al, Eur.Phys.J. A52, 50 (2016)

  11. Chatterjee et al, Eur. Phys. J. A52, 29 (2016)

  12. N.K. Glendenning, Compact Stars (Springer, New York, 2000). Second Edition

    MATH  Google Scholar 

  13. L.L. Lopes, D.P. Menezes, Phys. Rev. C 89, 025805 (2014)

    ADS  Google Scholar 

  14. Negreiros et al., Phys. Lett. B 718, 1176 (2013)

  15. B. Franzon, V. Dexheimer, S. Schramm, Mon. Not. R. Astron. Soc. 456, 2937 (2016)

    ADS  Google Scholar 

  16. D. Chatterjee et al., Mon. Not. R. Astron. Soc. 447, 3785 (2015)

    ADS  Google Scholar 

  17. E. Witten, Phys. Rev. D 30, 272 (1984)

    ADS  Google Scholar 

  18. A.R. Bodmer, Phys. Rev. D 4, 1601 (1971)

    ADS  Google Scholar 

  19. L. McLerran, R.D. Pisarski, Nucl. Phys. A 796, 83 (2007)

    ADS  Google Scholar 

  20. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

    ADS  Google Scholar 

  21. D.P. Menezes et al., Phys. Rev. C 79, 035807 (2009)

    ADS  Google Scholar 

  22. D.P. Menezes et al., J. Cosm. Astropart. Phys. 01, 024 (2019)

    Google Scholar 

  23. L.L. Lopes, D.P. Menezes, Eur. Phys. J. A 52, 17 (2016)

    ADS  Google Scholar 

  24. R. Gomes, V. Dexheimer, S. Han, S. Schramm, Mon. Not. R. Astron. Soc. 485, 4873 (2019)

    ADS  Google Scholar 

  25. S. Lalit et al., Eur. Phys. J. A 55, 10 (2019)

    ADS  Google Scholar 

  26. U. Lee, Mon. Not. R. Astron. Soc. 476, 3399 (2018)

    ADS  Google Scholar 

  27. M. Gusakov, E. Kantor, D. Ofengeim, Phys. Rev. D 96, 103012 (2017)

    ADS  Google Scholar 

  28. R. Gomes et al., Astron. Astrophys. 627, A61 (2019)

    Google Scholar 

  29. R. Gomes, V. Dexheimer, S. Schramm, Phys. Rev. D 94, 044018 (2016)

    ADS  Google Scholar 

  30. R. Gomes et al., Astrophys.J 850, 20 (2017)

    ADS  Google Scholar 

  31. M. Mariani, Mon. Not. R. Astron. Soc. 489, 4261 (2019)

    ADS  Google Scholar 

  32. Ya. B. Zel’dovich, I.D. Nivikov Stars and Relativity , Dover, New York, USA (1996)

  33. L. Lopes, D.P. Menezes, J. Cosmol. Astropart. Phys. 08, 002 (2015)

    ADS  Google Scholar 

  34. F. Wu, C. Wu, Z.Z. Ren, Chin. Phys. C 41, 045102 (2017)

    ADS  Google Scholar 

  35. R. Blandford, L. Hernquist, J. Phys. C 15, 6233 (1982)

    ADS  Google Scholar 

  36. Debarati Chatterjee, Jerome Novak, Micaela Oertel, Phys. Rev. C 99, 055811 (2019)

    ADS  Google Scholar 

  37. R. Cavagnoli, D.P. Menezes, C. Providencia, Phys. Rev. C 84, 065810 (2011)

    ADS  Google Scholar 

  38. L.L. Lopes, D.P. Menezes, Braz. J. Phys. 44, 744 (2014)

    ADS  Google Scholar 

  39. M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012)

    ADS  Google Scholar 

  40. M. Oertel et al., Rev. Mod. Phys. 89, 015007 (2017)

    ADS  Google Scholar 

  41. Lattimer & Steiner, Eur. Phys. J. A 50, 40 (2014)

    ADS  Google Scholar 

  42. H. Pais, C. Providencia, Phys. Rev. C 94, 015808 (2016)

    ADS  Google Scholar 

  43. V. Dexheimer et al., J. Phys. G 46, 034002 (2019)

    ADS  Google Scholar 

  44. Providencia et al, Front. Astron. Space Sci., 26 (March 2019)

  45. J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977)

    ADS  Google Scholar 

  46. N.K. Glendenning, S.A. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991)

    ADS  Google Scholar 

  47. M. Dutra et al., Phys. Rev. C 90, 055203 (2014)

    ADS  Google Scholar 

  48. A. Pais, Rev. Mod. Phys. 38, 215 (1966)

    ADS  Google Scholar 

  49. L.L. Lopes, D.P. Menezes, Braz. J. Phys. 42, 428 (2012)

    ADS  Google Scholar 

  50. S. Pal, D. Bandyopadhyay, S. Chakrabarty, Phys. Rev. Lett. 78, 2898 (1997)

    ADS  Google Scholar 

  51. Q. Peng, H. Tong, Mon. Not. R. Astron. Soc. 378, 159 (2007)

    ADS  Google Scholar 

  52. Rhabi et al, J. Phys. G36, 115204 (2009)

  53. W. Greiner, L. Neise, H. Stocker, Thermodynamics and Statistical Mechanics (Springer, New York, 1995)

    MATH  Google Scholar 

  54. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, Freeman and Company, San Francisco, USA (1973)

  55. C.Y. Ryu, K.S. Kim, M.-K. Cheoun, Phys. Rev. C 82, 025804 (2010)

    ADS  Google Scholar 

  56. A. Rabhi, P.K. Panda, C. Providencia, Phys. Rev. C 84, 035803 (2011)

    ADS  Google Scholar 

  57. R. Mallick, M. Sinha, Mon. Not. R. Astron. Soc. 414, 159 (2011)

    Google Scholar 

  58. V. Dexheimer, R. Negreiros, S. Schramm, Eur. Phys. J. A 48, 189 (2012)

    ADS  Google Scholar 

  59. R. Casali, L.B. Castro, D.P. Menezes, Phys. Rev. C 89, 015805 (2014)

    ADS  Google Scholar 

  60. R.O. Gomes, V. Dexheimer, C.A.Z. Vasconcellos, Astron. Nachr. 335, 666 (2014)

    ADS  Google Scholar 

  61. V. Dexheimer, D.P. Menezes, M. Strickland, J. Phys. G 41, 015203 (2014)

    ADS  Google Scholar 

  62. R. Mallick, S. Schramm, Phys. Rev. C 89, 045805 (2014)

    ADS  Google Scholar 

  63. O. Zubairi, F. Weber, J. Phys. Conf. Ser. 845, 012005 (2017)

    Google Scholar 

  64. M. Paret et al., Res. Astron. Astrophys. 15, 975 (2015)

    ADS  Google Scholar 

  65. G.E. Wright, Mon. Not. R. Astron. Soc. 162, 339 (1973)

    ADS  Google Scholar 

  66. P. Markey, R.J. Tayler, Mon. Not. R. Astron. Soc. 163, 77 (1973)

    ADS  Google Scholar 

  67. D.P. Menezes, M.D. Alloy, arXiv:1607.07687 (2016)

  68. J. Antoniadis et al., Science 340, 1233232 (2013)

    Google Scholar 

  69. H. Cromartie et al., Nat. Astron. (2019). https://doi.org/10.1038/s41550-019-0880-2

    ADS  Google Scholar 

  70. C. Mota et al.,. arXiv:1911.03208

  71. K. Hebeler et al., Phys. Rev. Lett. 105, 161102 (2010)

    ADS  Google Scholar 

  72. J.M. Lattimer, A.W. Steiner, Astrophys. J. 784, 123 (2014)

    ADS  Google Scholar 

  73. J. Ellis, J.I. Kapusta, K.A. Olive, Nucl. Phys. B 348, 345 (1991)

    ADS  Google Scholar 

  74. L. Lopes, D.P. Menezes, J. Cosmol. Astropart. Phys. 05, 038 (2018)

    ADS  Google Scholar 

  75. D.P. Menezes et al., Phys. Rev. C 80, 065805 (2009)

    ADS  Google Scholar 

  76. D.P. Menezes et al., Phys. Rev. C 89, 055207 (2014)

    ADS  Google Scholar 

  77. T. Hatsuda, T. Kunihiro, Phys. Lett. B 198, 126 (1987)

    ADS  Google Scholar 

  78. T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 221 (1994)

    ADS  Google Scholar 

  79. R. Denke, M.B. Pinto, Phys. Rev. D 88, 056008 (2013)

    ADS  Google Scholar 

  80. M. Buballa, M. Oertel, Phys. Lett. B 457, 261 (1999)

    ADS  Google Scholar 

  81. V. Dexheimer, J.R. Torres, D.P. Menezes, Eur. Phys. J. C 73, 2569 (2013)

    ADS  Google Scholar 

  82. M. Kitazawa et al., Prog. Theor. Phys. 108, 5 (2002)

    Google Scholar 

  83. T. Klahn, T. Fischer, Astrophys. J. 810, 134 (2015)

    ADS  Google Scholar 

  84. M. Hanauske et al., Phys. Rev. D 64, 043005 (2001)

    ADS  Google Scholar 

  85. G.Y. Shao et al., Phys. Rev. D 85, 114017 (2012)

    ADS  Google Scholar 

  86. G.A. Contrera, A.G. Grunfeld, D.B. Blaschke, Phys. Part. Nucl. Lett. 11, 4 (2014)

    Google Scholar 

  87. K. Kashiwa, T. Hell, W. Weise, Phys. Rev. D 84, 056010 (2011)

    ADS  Google Scholar 

  88. J. Sugano et al., Phys. Rev. D 90, 037901 (2014)

    ADS  Google Scholar 

  89. D.P. Menezes, D.B. Melrose, C. Providência, K. Wu, Phys. Rev. C 73, 025806 (2006)

    ADS  Google Scholar 

  90. D.P. Menezes, C. Providência, Phys. Rev. C 68, 035804 (2003)

    ADS  Google Scholar 

  91. H. Beth, G.E. Brown, J. Cooperstein Nucl. Phys. A 462, 791 (1987)

    ADS  Google Scholar 

  92. B. Serot, H. Uechi, Ann. Phys. A 179, 272 (1987)

    ADS  Google Scholar 

  93. T. Maruyama et al., Phys. Rev. D 76, 123015 (2007)

    ADS  Google Scholar 

  94. T. Maruyama et al., Phys. Lett. B 659, 192 (2007)

    ADS  Google Scholar 

  95. M. Paoli, D.P. Menezes, Eur. Phys. J. A 46, 413 (2010)

    ADS  Google Scholar 

  96. B.P. Abbott et al., LIGO Scientific Collaboration and Virgo Collaboration. Phys. Rev. Lett. 119, 161101 (2017)

    ADS  Google Scholar 

  97. Tuhin Malik, N. Alam, M. Fortin, C. Providência, B. K. Agrawal, T. K. Jha, Bharat Kumar, and S. K. Patra Phys. Rev. C. 98, 035804 (2018)

  98. Odilon Lourenço, Mariana Dutra, César H. Lenzi, César V. Flores, Débora P. Menezes, Phys. Rev. C 99, 045202 (2019)

    ADS  Google Scholar 

  99. T. Zhao, J. Lattimer, Phys. Rev. D 98, 063020 (2018)

    ADS  Google Scholar 

  100. E. Most et al., Phys. Rev. Lett. 120, 261103 (2018)

    ADS  Google Scholar 

  101. Odilon Lourenço, Mariana Dutra, César Lenzi, S. K. Biswal, M. Bhuyan, Débora P. Menezes, arXiv: 1901.04529, Eur. Phys. Jour. A (2020) in press

  102. F.J. Fattoyev, J. Piekarewicz, C.J. Horowitz, Phys. Rev. Lett. 120, 172702 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is a part of the project INCT-FNA Proc. No. 464898/2014-5 and it was partially supported by CNPq (Brazil) under grant 301155.2017-8 (D.P.M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz L. Lopes.

Additional information

Communicated by Francesca Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, L.L., Menezes, D.P. Role of vector channel in different classes of (non) magnetized neutron stars. Eur. Phys. J. A 56, 122 (2020). https://doi.org/10.1140/epja/s10050-020-00125-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00125-9

Navigation