Skip to main content
Log in

Correlation between jerky flow and jerky dynamics in a nanoscratch on a metallic glass film

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Chaos has been well understood in dynamic system, however, how the chaotic behavior occur in jerky flow in material, is still not clear, and is lack of specific chaotic attractor. Here the jerky evolution of lateral force and the stair-like fluctuation of lateral displacement are observed for Ni62Nb38(at.%) metallic glass film during nanoscratch process. This jerky flow is investigated by using the largest Lyapunov exponent, Kolmogorov entropy and fractal dimension, and chaotic behavior of lateral force-time and normal displacement-lateral displacement sequences is verified. In addition to time series analysis, it is found that jerk equation can be used to describe the jerky flow of the metallic-glass film during nanoscratch. More importantly, unambiguous chaotic attractor is presented by jerky dynamics using “jerk”-singularities, namely the total change rate of lateral force relative to scratch time. These reveal an inner connection between jerky flow and jerky dynamics in nanoscratch of a metallic-glass film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ananthakrishna, and D. Sahoo, J. Phys. D-Appl. Phys. 14, 2081 (1981).

    Article  ADS  Google Scholar 

  2. G. Ananthakrishna, and M. C. Valsakumar, Phys. Lett. A 95, 69 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  3. J. L. Ren, C. Chen, Z. Y. Liu, R. Li, and G. Wang, Phys. Rev. B 86, 134303 (2012).

    Article  ADS  Google Scholar 

  4. C. Chen, J. Ren, G. Wang, K. A. Dahmen, and P. K. Liaw, Phys. Rev. E 92, 012113 (2015).

    Article  ADS  Google Scholar 

  5. D. X. Han, G. Wang, J. L. Ren, L. P. Yu, J. Yi, I. Hussain, S. X. Song, H. Xu, K. C. Chan, and P. K. Liaw, Acta Mater. 136, 49 (2017).

    Article  ADS  Google Scholar 

  6. Y. Q. Cheng, Z. Han, Y. Li, and E. Ma, Phys. Rev. B 80, 134115 (2009).

    Article  ADS  Google Scholar 

  7. B. A. Sun, H. B. Yu, W. Jiao, H. Y. Bai, D. Q. Zhao, and W. H. Wang, Phys. Rev. Lett. 105, 035501 (2010).

    Article  ADS  Google Scholar 

  8. B. A. Sun, S. Pauly, J. Tan, M. Stoica, W. H. Wang, U. Kühn, and J. Eckert, Acta Mater. 60, 4160 (2012).

    Article  Google Scholar 

  9. K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, Nat. Phys. 7, 554 (2011).

    Article  Google Scholar 

  10. K. Dahmen, D. Ertaş, and Y. Ben-Zion, Phys. Rev. E 58, 1494 (1998), arXiv: cond-mat/9803057.

    Article  ADS  Google Scholar 

  11. W. R. Ashby, J. Gen. Psychol. 37, 125 (1947).

    Article  Google Scholar 

  12. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

    Article  ADS  Google Scholar 

  13. M. S. Bharathi, M. Lebyodkin, G. Ananthakrishna, C. Fressengeas, and L. P. Kubin, Phys. Rev. Lett. 87, 165508 (2001), arXiv: condmat/0109189.

    Article  ADS  Google Scholar 

  14. M. A. Lebyodkin, and T. A. Lebedkina, Phys. Rev. E 77, 026111 (2008).

    Article  ADS  Google Scholar 

  15. D. Ma, A. D. Stoica, and X. L. Wang, Nat. Mater. 8, 30 (2009).

    Article  ADS  Google Scholar 

  16. P. Frederickson, J. L. Kaplan, E. D. Yorke, and J. A. Yorke, J. Differ. Equ. 49, 185 (1983).

    Article  ADS  Google Scholar 

  17. T. Y. Li, and J. A. Yorke, Am. Math. Mon. 82, 985 (1975).

    Article  Google Scholar 

  18. J. L. Kaplan, and J. L. Yoke, Chaotic Behavior of Multidimensional Difference Equation, Vol. 31 (Springer, Berlin Heidelberg, 1979), pp. 218–219.

    Google Scholar 

  19. J. Ren, C. Chen, G. Wang, W. S. Cheung, B. Sun, N. Mattern, S. Siegmund, and J. Eckert, J. Appl. Phys. 116, 033520 (2014).

    Article  ADS  Google Scholar 

  20. R. Sarmah, G. Ananthakrishna, B. A. Sun, and W. H. Wang, Acta Mater. 59, 4482 (2011).

    Article  Google Scholar 

  21. J. C. Sprott, Phys. Rev. E 50, R647 (1994).

    Article  ADS  Google Scholar 

  22. R. Eichhorn, S. J. Linz, and P. Hanggi, Phys. Rev. E 58, 7151 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  23. S. J. Linz, Phys. Lett. A 275, 204 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Maaβ, and J. F. Loffler, Adv. Funct. Mater. 25, 2353 (2015).

    Article  Google Scholar 

  25. Z. Y. Liu, G. Wang, K. C. Chan, J. L. Ren, Y. J. Huang, X. L. Bian, X. H. Xu, D. S. Zhang, Y. L. Gao, and Q. J. Zhai, J. Appl. Phys. 114, 033521 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JingLi Ren or Gang Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51925103, 11771407, 51761135125, and 51671120), the China Postdoctoral Science Foundation (Grant No. 2019M651600), the Research Foundation for Advanced Talents of Henan University of Technology (Grant No. 2018BS027), and the 111 Project (Grant No. D16002).

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Han, D., Ren, J. et al. Correlation between jerky flow and jerky dynamics in a nanoscratch on a metallic glass film. Sci. China Phys. Mech. Astron. 63, 277011 (2020). https://doi.org/10.1007/s11433-019-1512-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1512-x

Keywords

Navigation