Skip to main content

Advertisement

Log in

Cerebrospinal fluid MFG-E8 as a promising biomarker of amyotrophic lateral sclerosis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease resulting in the dysfunction of upper and lower motor neurons. Biomarkers in fluid have been used to monitor the disease and its progression. Milk fat globule-EGF factor 8 (MFG-E8) is an inflammation modulator, which is involved in the pathogenesis of neurodegenerative diseases. We here took this study to evaluate the predictive value of MFG-E8 in ALS.

Methods

This study consisted of 19 patients with ALS and 15 healthy controls. Cerebrospinal fluid (CSF) were collected from all participants and tested for the levels of MFG-E8, neurofilament light (NFL), and heavy chain (NFH). The correlations between MFG-E8 and NFL, NFH, ALS severity, cognitive status, and forced vital capacity (FVC) were analyzed.

Results

We found that MFG-E8 performs well in distinguishing ALS from controls, with relatively higher level of MFG-E8 in ALS subjects, than controls. Moreover, MFG-E8 negatively correlated with the revised ALS function rating scale (ALS-FRS), but not with the levels of NFL and NFH, disease duration, progression rate, mini-mental state examination (MMSE), and FVC.

Conclusions

The study proved that CSF MFG-E8 helps distinguish ALS from controls. However, the protein in CSF negatively predicted disease severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nowicka N, Juranek J, Juranek JK, Wojtkiewicz J (2019) Risk factors and emerging therapies in amyotrophic lateral sclerosis. Int J Mol Sci 20(11):E2616

  2. Abati E, Bresolin N, Comi G, Corti S (2019) Advances, challenges, and perspectives in translational stem cell therapy for amyotrophic lateral sclerosis. Mol Neurobiol 56(10):6703–6715

  3. Lule D, Bohm S, Muller HP, Aho-Ozhan H, Keller J, Gorges M, Loose M, Weishaupt JH, Uttner I, Pinkhardt E, Kassubek J, Del TK, Braak H, Abrahams S, Ludolph AC (2018) Cognitive phenotypes of sequential staging in amyotrophic lateral sclerosis. Cortex. 101:163–171

    Article  PubMed  Google Scholar 

  4. Da CS, Bui A, Saberi S, Lee SK, Stauffer J, McAlonis-Downes M, Schulte D, Pizzo DP, Parone PA, Cleveland DW, Ravits J (2017) Misfolded SOD1 is not a primary component of sporadic ALS. Acta Neuropathol 134(1):97–111

    Article  Google Scholar 

  5. Floeter MK, Gendron TF (2018) Biomarkers for amyotrophic lateral sclerosis and Frontotemporal dementia associated with hexanucleotide expansion mutations in C9orf72. Front Neurol 9:1063

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pawlitzki M, Schreiber S, Bittner D, Kreipe J, Leypoldt F, Rupprecht K, Carare RO, Meuth SG, Vielhaber S, Kortvelyessy P (2018) CSF neurofilament light chain levels in primary progressive MS: signs of axonal neurodegeneration. Front Neurol 9:1037

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gonzalez-Garza MT, Martinez HR, Cruz-Vega DE, Hernandez-Torre M, Moreno-Cuevas JE (2018) Adipsin, MIP-1b, and IL-8 as CSF biomarker panels for ALS diagnosis. Dis Markers 2018:3023826

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mishra PS, Vijayalakshmi K, Nalini A, Sathyaprabha TN, Kramer BW, Alladi PA, Raju TR (2017) Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia. J Neuroinflammation 14(1):251

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sekizawa T, Openshaw H, Ohbo K, Sugamura K, Itoyama Y, Niland JC (1998) Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases. J Neurol Sci 154(2):194–199

    Article  CAS  PubMed  Google Scholar 

  10. Aoki N, Ishii T, Ohira S, Yamaguchi Y, Negi M, Adachi T, Nakamura R, Matsuda T (1997) Stage specific expression of milk fat globule membrane glycoproteins in mouse mammary gland: comparison of MFG-E8, butyrophilin, and CD36 with a major milk protein, beta-casein. Biochim Biophys Acta 1334(2–3):182–190

    Article  CAS  PubMed  Google Scholar 

  11. Xu X, Cai X, Zhu Y, He W, Wu Q, Shi X, Fang Y, Pei Z (2018) MFG-E8 inhibits a beta-induced microglial production of cathelicidin-related antimicrobial peptide: a suitable target against Alzheimer's disease. Cell Immunol 331:59–66

    Article  CAS  PubMed  Google Scholar 

  12. Nakashima Y, Miyagi-Shiohira C, Noguchi H, Omasa T (2018) The healing effect of human milk fat globule-EGF factor 8 protein (MFG-E8) in a rat model of Parkinson's disease. Brain Sci 8(9):E167

  13. Del CM, Galimberti D, Elias N, Boonkamp L, Pijnenburg YA, van Swieten JC, Watts K, Paciotti S, Beccari T, Hu W, Teunissen CE (2018) Novel CSF biomarkers to discriminate FTLD and its pathological subtypes. Ann Clin Transl Neurol 5(10):1163–1175

    Article  Google Scholar 

  14. Shi X, Cai X, Di W, Li J, Xu X, Zhang A, Qi W, Zhou Z, Fang Y (2017) MFG-E8 selectively inhibited Abeta-induced microglial M1 polarization via NF-kappaB and PI3K-Akt pathways. Mol Neurobiol 54(10):7777–7788

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Xu X, Cai X, Weng Y, Wang Y, Shen Q, Shi X (2019) Milk fat globule-epidermal growth factor-factor 8 reverses lipopolysaccharide-induced microglial oxidative stress. Oxidative Med Cell Longev 2019:2601394

    Google Scholar 

  16. Xu X, Zhang A, Zhu Y, He W, Di W, Fang Y, Shi X (2018) MFG-E8 reverses microglial-induced neurotoxic astrocyte (A1) via NF-kappaB and PI3K-Akt pathways. J Cell Physiol 234(1):904–914

    Article  PubMed  Google Scholar 

  17. Cunha C, Santos C, Gomes C, Fernandes A, Correia AM, Sebastiao AM, Vaz AR, Brites D (2018) Downregulated glia interplay and increased miRNA-155 as promising markers to track ALS at an early stage. Mol Neurobiol 55(5):4207–4224

    CAS  PubMed  Google Scholar 

  18. Vaz AR, Pinto S, Ezequiel C, Cunha C, Carvalho LA, Moreira R, Brites D (2019) Phenotypic effects of wild-type and mutant SOD1 expression in N9 murine microglia at steady state, Inflammatory and Immunomodulatory Conditions. Front Cell Neurosci 13:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299

    Article  CAS  PubMed  Google Scholar 

  20. Pawlukowska W, Baumert B, Golab-Janowska M, Sobus A, Welnicka A, Meller A, Machowska-Sempruch K, Zawislak A, Luczkowska K, Milczarek S, Osekowska B, Paczkowska E, Rotter I, Nowacki P, Machalinski B (2019) Influence of lineage-negative stem cell therapy on articulatory functions in ALS patients. Stem Cells Int 2019:7213854

    Article  PubMed  PubMed Central  Google Scholar 

  21. Folstein MF, Folstein SE, McHugh PR (1975) "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  Google Scholar 

  22. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002; 166(4):518–624

  23. Tilanus T, Groothuis JT, TenBroek-Pastoor J, Feuth TB, Heijdra YF, Slenders J, Doorduin J, Van Engelen BG, Kampelmacher MJ, Raaphorst J (2017) The predictive value of respiratory function tests for non-invasive ventilation in amyotrophic lateral sclerosis. Respir Res 18(1):144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu Z, Henderson RD, David M, McCombe PA (2016) Neurofilaments as biomarkers for amyotrophic lateral sclerosis: a systematic review and meta-analysis. PLoS One 11(10):e164625

    Google Scholar 

  25. Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, Barro C, Kappos L, Comabella M, Fazekas F, Petzold A, Blennow K, Zetterberg H, Kuhle J (2018) Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 14(10):577–589

    Article  CAS  PubMed  Google Scholar 

  26. Weydt P, Oeckl P, Huss A, Muller K, Volk AE, Kuhle J, Knehr A, Andersen PM, Prudlo J, Steinacker P, Weishaupt JH, Ludolph AC, Otto M (2016) Neurofilament levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis. Ann Neurol 79(1):152–158

    Article  CAS  PubMed  Google Scholar 

  27. Ganesalingam J, An J, Shaw CE, Shaw G, Lacomis D, Bowser R (2011) Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J Neurochem 117(3):528–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olney NT, Spina S, Miller BL (2017) Frontotemporal dementia. Neurol Clin 35(2):339–374

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology. 59(7):1077–1079

    Article  PubMed  Google Scholar 

  30. Phukan J, Elamin M, Bede P, Jordan N, Gallagher L, Byrne S, Lynch C, Pender N, Hardiman O (2012) The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 83(1):102–108

    Article  PubMed  Google Scholar 

  31. Strong MJ, Grace GM, Freedman M, Lomen-Hoerth C, Woolley S, Goldstein LH, Murphy J, Shoesmith C, Rosenfeld J, Leigh PN, Bruijn L, Ince P, Figlewicz D (2009) Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10(3):131–146

    Article  PubMed  Google Scholar 

  32. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 72(2):245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J, Lu YF, Wang Q, Krueger BJ, Ren Z, Keebler J, Han Y, Levy SE, Boone BE, Wimbish JR, Waite LL, Jones AL, Carulli JP, Day-Williams AG, Staropoli JF, Xin WW, Chesi A, Raphael AR, McKenna-Yasek D, Cady J, Vianney de Jong JMB, Kenna KP, Smith BN, Topp S, Miller J, Gkazi A, FALS Sequencing Consortium, al-Chalabi A, van den Berg LH, Veldink J, Silani V, Ticozzi N, Shaw CE, Baloh RH, Appel S, Simpson E, Lagier-Tourenne C, Pulst SM, Gibson S, Trojanowski JQ, Elman L, McCluskey L, Grossman M, Shneider NA, Chung WK, Ravits JM, Glass JD, Sims KB, van Deerlin VM, Maniatis T, Hayes SD, Ordureau A, Swarup S, Landers J, Baas F, Allen AS, Bedlack RS, Harper JW, Gitler AD, Rouleau GA, Brown R, Harms MB, Cooper GM, Harris T, Myers RM, Goldstein DB (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science. 347(6229):1436–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Muller K, Marroquin N, Nordin F, Hubers A, Weydt P, Pinto S, Press R, Millecamps S, Molko N, Bernard E, Desnuelle C et al (2015) Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 18(5):631–636

    Article  CAS  PubMed  Google Scholar 

  35. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 72(2):257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chio A, Hammond ER, Mora G, Bonito V, Filippini G (2015) Development and evaluation of a clinical staging system for amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 86(1):38–44

    Article  PubMed  Google Scholar 

  37. Ahn SW, Kim SH, Kim JE, Kim SM, Kim SH, Sung JJ, Lee KW, Hong YH (2011) Frontal assessment battery to evaluate frontal lobe dysfunction in ALS patients. Can J Neurol Sci 38(2):242–246

    Article  PubMed  Google Scholar 

  38. Oskarsson B, Quan D, Rollins YD, Neville HE, Ringel SP, Arciniegas DB (2010) Using the frontal assessment battery to identify executive function impairments in amyotrophic lateral sclerosis: a preliminary experience. Amyotroph Lateral Scler 11(1–2):244–247

    Article  PubMed  Google Scholar 

  39. Plastiras SC, Karadimitrakis SP, Ziakas PD, Vlachoyiannopoulos PG, Moutsopoulos HM, Tzelepis GE (2006) Scleroderma lung: initial forced vital capacity as predictor of pulmonary function decline. Arthritis Rheum 55(4):598–602

    Article  PubMed  Google Scholar 

  40. Lechtzin N, Cudkowicz ME, de Carvalho M, Genge A, Hardiman O, Mitsumoto H, Mora JS, Shefner J, Van den Berg LH, Andrews JA (2018) Respiratory measures in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 19(5–6):321–330

    Article  PubMed  Google Scholar 

  41. Gendron TF, Daughrity LM, Heckman MG, Diehl NN, Wuu J, Miller TM, Pastor P, Trojanowski JQ, Grossman M, Berry JD, Hu WT, Ratti A, Benatar M, Silani V, Glass JD, Floeter MK, Jeromin A, Boylan KB, Petrucelli L, the C9ORF72 Neurofilament Study Group (2017) Phosphorylated neurofilament heavy chain: a biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol 82(1):139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (Grant No. 81701061, 81901084), the Medical Scientific Research Foundation of Guangdong Province of China (Grant No. A2019114), and the Shaanxi Provincial Natural Science Foundation (2017 JM8042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

No interventions were done outside the routine clinical care for patients. Subjects have given their written informed consents and the study protocol was approved by the institutional review board.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Wu, Y., Wang, Y. et al. Cerebrospinal fluid MFG-E8 as a promising biomarker of amyotrophic lateral sclerosis. Neurol Sci 41, 2915–2920 (2020). https://doi.org/10.1007/s10072-020-04416-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04416-3

Keywords

Navigation