Skip to main content
Log in

Electrical properties of n-conducting barium titanate ceramics over a wide temperature range under voltage load

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Bulk and grain boundary resistivities as well as grain boundary capacitances of PTCR (positive temperature coefficient of resistivity) thermistors have been investigated as a function of voltage load and temperature ranging from 30 to 820 °C by application of impedance spectroscopy. In addition, current – voltage curves have been measured and the resistivities extracted from these dc measurements are in close agreement with those obtained from impedance spectroscopy. The resistance – temperature characteristics are typical for n-type barium titanate – based PTCR ceramics, viz. a steep increase of the grain boundary resistance above the Curie – temperature (PTCR effect) and decreasing resistance with increasing temperature in the NTC (negative temperature coefficient) regime above approximately 200 °C. The grain boundary capacitance shows a sharp peak at the Curie – temperature (around 120 °C) and obeys the Curie – Weiss law in the paraelectric state. Basically, the grain boundary resistivities decrease significantly under voltage load. However, at elevated temperatures (above 600–700 °C) this non-linear effect vanishes and linear ohmic (or even sub-ohmic) behavior can be observed. The electrical properties can be interpreted in terms of a modified double Schottky barrier model. Reasonable coincidence between simulated and measured current - voltage curves as well as grain boundary conductivities has been found in a wide temperature range (up to 800 °C) under high field conditions (up to an external field strength of 1000 V cm−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Heywang, J. Mater. Sci. 6, 1214 (1971)

    Article  CAS  Google Scholar 

  2. G.H. Jonker, Solid State Electron. 7, 895 (1964)

    Article  CAS  Google Scholar 

  3. B.M. Kulwicki, Adv. Ceram. 1, 138 (1981)

    CAS  Google Scholar 

  4. B. Huybrechts, K. Ishizaki, M. Takata, J. Mater. Sci. 30, 2463 (1995)

    Article  CAS  Google Scholar 

  5. J. Daniels, R. Wernicke, Philips Res. Rep. 31, 544 (1976)

    CAS  Google Scholar 

  6. W. Preis, W. Sitte, J. Electroceram. 34, 185 (2015)

    Article  CAS  Google Scholar 

  7. J. Hou, Z. Zhang, W. Preis, W. Sitte, G. Dehm, J. Eur. Ceram. Soc. 31, 763 (2011)

    Article  CAS  Google Scholar 

  8. K. Hayashi, T. Yamamoto, T. Sakuma, J. Am. Ceram. Soc. 79, 1669 (1996)

    Article  CAS  Google Scholar 

  9. J. Seaton, C. Leach, Acta Mater. 51, 6027 (2003)

  10. Y.-M. Chiang, T. Takagi, J. Am. Ceram. Soc. 73, 3286 (1990)

    Article  CAS  Google Scholar 

  11. W. Preis, W. Sitte, Solid State Ionics 177, 2549 (2006)

    Article  CAS  Google Scholar 

  12. M.A. Zubair, C. Leach, J. Eur. Ceram. Soc. 30, 107 (2010)

    Article  CAS  Google Scholar 

  13. T. Frömling, J. Hou, W. Preis, W. Sitte, H. Hutter, J. Fleig, J. Appl. Phys. 110, 043531 (2011)

    Article  Google Scholar 

  14. W. Preis, W. Sitte, Solid State Ionics 179, 765 (2008)

    Article  CAS  Google Scholar 

  15. W. Preis, Solid State Ionics 299, 82 (2017)

    Article  CAS  Google Scholar 

  16. W. Preis, W. Sitte, Solid State Ionics 262, 486 (2014)

    Article  CAS  Google Scholar 

  17. K. Kirstein, K. Reichmann, W. Preis, S. Mitsche, J. Eur. Ceram. Soc. 31, 2339 (2011)

    Article  CAS  Google Scholar 

  18. W. Preis, W. Sitte, Solid State Ionics 288, 286 (2016)

    Article  CAS  Google Scholar 

  19. W. Preis, W. Sitte, Solid State Ionics 177, 3093 (2006)

    Article  CAS  Google Scholar 

  20. W. Preis, A. Bürgermeister, W. Sitte, P. Supancic, Solid State Ionics 173, 69 (2004)

    Article  CAS  Google Scholar 

  21. F. Greuter, G. Blatter, Semicond. Sci. Technol. 5, 111 (1990)

    Article  CAS  Google Scholar 

  22. C.J. Johnson, Appl. Phys. Lett. 7, 221 (1965)

    Article  CAS  Google Scholar 

  23. G. Rupprecht, R.O. Bell, Phys. Rev. 135, A748 (1964)

    Article  Google Scholar 

  24. R. Waser, R. Hagenbeck, Acta Mater. 48, 797 (2000)

  25. W. Preis, W. Sitte, J. Electroceram. 27, 83 (2011)

    Article  CAS  Google Scholar 

  26. I. Riess, Phys. Rev. B35, 5740 (1987)

    Article  Google Scholar 

  27. J. Maier, Z. Phys. Chem. 219, 35 (2005)

    Article  CAS  Google Scholar 

  28. J. Fleig, S. Rodewald, J. Maier, J. Appl. Phys. 87, 2372 (2000)

    Article  CAS  Google Scholar 

  29. \( \mathrm{ierfc}(x)={\int}_x^{\infty}\operatorname{erfc}\left(\xi \right)\mathrm{d}\xi \) according to [H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959)]

  30. H. Ihrig, W. Puschert, J. Appl. Phys. 48, 3081 (1977)

    Article  CAS  Google Scholar 

  31. C.N. Berglund, W.S. Baer, Phys. Rev. 157, 358 (1967)

    Article  CAS  Google Scholar 

  32. A. M. J. H. Seuter, Philips Res. Repts. Suppl. 3 (Thesis, Technical University Twente, 1974)

  33. H.-I. Yoo, C.-R. Song, D.-K. Lee, J. Electroceram. 8, 5 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Preis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preis, W. Electrical properties of n-conducting barium titanate ceramics over a wide temperature range under voltage load. J Electroceram 44, 173–182 (2020). https://doi.org/10.1007/s10832-020-00208-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-020-00208-5

Keywords

Navigation