Skip to main content
Log in

Stable isotope characterisation of recent aragonite travertine deposits associated with the Fitero thermal waters (Spain)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The travertines of the Fitero thermal springs, with more than 98% of aragonite in most of the samples, are studied in this paper. The main objective is to improve the general understanding of aragonite precipitation, since the deposits of almost pure aragonite are very scarce. This study presents a complete mineralogical and isotopic characterisation, including the evaluation of the δ18O and δ13C fractionation during precipitation, as valuable information for paleoclimate and paleoenvironmental studies. Samples of a laminated travertine deposit constituted by almost pure aragonite were taken from a pipe discharging water at 40 °C. Waters suffered an important CO2 outgassing, as suggested by the geochemical calculations and the δ13C values of travertines and waters. This outgassing triggers the oversaturation and precipitation of carbonate phases. Temperature seems to be the main factor controlling the precipitation of aragonite or calcite, as checked by studying another travertine sample with higher calcite content. Various δ18O isotope fractionation equations for aragonite and calcite were used. The results indicate that precipitation took place close to equilibrium according to some of these equations. The fact that the equilibrium is maintained in a natural system with an important CO2 loss is surprising. However, it can be explained by an HCO3–water oxygen isotopic equilibrium and a direct transfer of the HCO3 isotope signal to the carbonate without fractionation due to the fast CO2 loss and precipitation. Finally, considering other natural aragonite samples, a fractionation equation is defined for natural aragonite in the temperature range between 23 and 80 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(modified from Blasco et al. 2018)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The terminology that will be used here is the one proposed by Ford and Pedley (1996) in which the term travertine is used to refer to the carbonates precipitated from thermal (hot) waters, while the term tufa is reserved for the carbonates precipitated from cold waters (e.g. rivers).

References

  • AlKhatib M, Eisenhauer A (2017) Calcium and strontium isotope fractionation during precipitation from aqueous solutions as a function of temperature and reaction rate; II. Aragonite. Geochim Cosmochim Acta 209:320–342

    Google Scholar 

  • Andrews JE (2006) Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth Sci Rev 75:85–104

    Google Scholar 

  • Arenas C, Osácar MC, Auqué LF et al (2018) Seasonal temperatures from δ18O in recent Spanish tufa stromatolites: equilibrium redux! Sedimentology 65:1611–1630

    Google Scholar 

  • Asta MP, Auqué LF, Sanz FJ et al (2017) Travertines associated with the Alhama-Jaraba thermal waters (NE, Spain): genesis and geochemistry. Sediment Geol 347:100–116

    Google Scholar 

  • Auqué LF, Fernández J, Tena Calvo JM (1988) Las aguas termaldes de Fitero (Navarra) y Arnedillo (Rioja). I. Análisis geoquímico de los estados de equilibrio-desequilibrio en las surgencias. Estud Geol 44:285–292

    Google Scholar 

  • Auqué LF, Fernández J, Tena Calvo JM et al (1989) Análisis de los estados de equilibrio termodinámico en el reservorio de las surgencias termales de Fitero (Navarra) y Arnedillo (Rioja). Rev la Soc Geol Esp 2:125–132

    Google Scholar 

  • Blasco M, Gimeno MJ, Auqué LF (2018) Low temperature geothermal systems in carbonate-evaporitic rocks: Mineral equilibria assumptions and geothermometrical calculations. Insights from the Arnedillo thermal waters (Spain). Sci Total Environ 615:526–539

    Google Scholar 

  • Blasco M, Auqué LF, Gimeno MJ (2019) Geochemical evolution of thermal waters in carbonate—evaporitic systems: the triggering effect of halite dissolution in the dedolomitisation and albitisation processes. J Hydrol 570:623–636

    Google Scholar 

  • Böhm F, Joachimski MM, Dullo WC et al (2000) Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochim Cosmochim Acta 64:1695–1703

    Google Scholar 

  • Capezzuoli E, Gandin A, Pedley M (2014) Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of the art. Sedimentology 61:1–21

    Google Scholar 

  • Chacko T, Deines P (2008) Theoretical calculation of oxygen isotope fractionation factors in carbonate systems. Geochim Cosmochim Acta 72:3642–3660

    Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev Mineral Geochem 43:1–81

    Google Scholar 

  • Chafetz HS, Lawrence JR (1994) Stable isotopic variability within modern travertines. Géogr Phys Quat 48:257–273

    Google Scholar 

  • Chafetz HS, Rush PF, Utech NM (1991) Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system. Sedimentology 38:107–126

    Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press/Lewis Publishers, Boca-Raton (Florida)

    Google Scholar 

  • Coloma P (1998) El agua subterránea en La Rioja. Zubía Monogr 10:63–132

    Google Scholar 

  • Coloma P, Sánchez JA, Martínez FJ (1995) El drenaje subterráneo de la cordillera Ibércia en la depresión terciaria del Ebro (sector Riojano). Geogaceta 17:68–71

    Google Scholar 

  • Coloma P, Sánchez JA, Martínez FJ (1996) Procesos geotérmicos causados por la circulación del agua subterránea en el contacto entre la Sierra de Cameros y la Depresión Terciaria del Ebro. Geogaceta 20:749–753

    Google Scholar 

  • Coloma P, Sánchez JA, Martínez FJ (1997a) Sistemas de flujo subterráneo regional en el acuífero carbonatado mesozoico de la Sierra de Cameros. Sector Oriental. Estud Geol 53:159–172

    Google Scholar 

  • Coloma P, Sánchez JA, Martínez FJ, Pérez A (1997b) El drenaje subterráneo de la Cordillera Ibérica en la Depresión terciaria del Ebro. Rev la Soc Geol Esp 10:205–218

    Google Scholar 

  • Coloma P, Sánchez JA, Jorge JC (1998) Simulación matemática del flujo y transporte de calor del sector oriental de la Cuenca de Cameros. Zubía Monogr 10:45–61

    Google Scholar 

  • Coplen TB (2007) Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim Cosmochim Acta 71:3948–3957

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 80(133):1702–1703

    Google Scholar 

  • Delgado A, Reyes E (2004) Isótopos estables como indicadores paleoclimáticos y paleohidrológicos en medios continentales. Semin la Soc Española Mineral Geoquímica Isotópica Apl al Medioambiente 1:37–53

    Google Scholar 

  • Demény A, Kele S, Siklósy Z (2010) Empirical equations for the temperature dependence of calcite-water oxygen isotope fractionation from 10 to 70 °C. Rapid Commun Mass Spectrom 24:3521–3526

    Google Scholar 

  • Díaz-Teijeiro MF, Rodríguez-Arévalo J, Castaño S (2009) La Red Española de Vigilancia de Isótopos en la Precipitación (REVIP): distribución isotópica espacial y aportación al conocimiento del ciclo hidrológico. Ing Civ 155:87–97

    Google Scholar 

  • Fernández J, Auqué LF, Sánchez Cela VS, Guaras B (1988) Las aguas termales de Fitero (Navarra) y Arnedillo (Rioja). II. Análisis comparativo de la aplicación de técnicas geotermométricas químicas a aguas relacionadas con reservorios carbonatado-evaporíticos. Estud Geol 44:453–469

    Google Scholar 

  • Fischbeck R, Müller G (1971) Monohydrocalcite, hydromagnesite, nesquehonite, dolomite, aragonite and calcite in speleothems of the Frankische Schweiz, Western Germany. Contrib Mineral Petrol 33:87–92

    Google Scholar 

  • Folk RL (1994) Interaction between bacteria, nanobacteria, and mineral precipitation in hot springs of central Italy. Géogr Phys Quat 48:233–246

    Google Scholar 

  • Ford TD, Pedley HM (1996) A review of tufa and travertine deposits of the world. Earth Sci Rev 41:117–175

    Google Scholar 

  • Fouke BW, Farmer JD, Des Marais DJ et al (2000) Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.). J Sediment Res 70:565–585

    Google Scholar 

  • Friedman I (1970) Some investigations of the deposition of travertine from Hot Springs-I. The isotopic chemistry of a travertine-depositing spring. Geochim Cosmochim Acta 34:1303–1315

    Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data on geochemistry, USGS proffesional paper 440-KK, 6th edn. United States Government Printing Office, Washington, p 109

    Google Scholar 

  • Gabitov RI (2013) Growth-rate induced disequilibrium of oxygen isotopes in aragonite: an in situ study. Chem Geol 351:268–275

    Google Scholar 

  • Garnett ER, Andrews JE, Preece RC, Dennis PF (2004) Climatic change recorded by stable isotopes and trace elements in a British Holocene tufa. J Quat Sci 19:251–262

    Google Scholar 

  • Gil A, Villalaín JJ, Barbero L et al (2002) Aplicación de Técnicas geoquímicas, geofísicas y mineralógicas al estudio de la Cuenca de Cameros. Implicaciones Geométricas y Evolutivas Zubía Monográfico 14:65–98

    Google Scholar 

  • Goy A, Gómez JJ, Yébenes A (1976) El Jurásico de la Rama Castellana de la Cordillera Ibérica (Mitad norte) I. Unidades litoestratigráficas. Estud Geol 32:391–423

    Google Scholar 

  • Grossman EL, Ku T (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol 59:59–74

    Google Scholar 

  • Halas S, Wolacewicz W (1982) The experimental study of oxygen isotope exchange reaction between dissolved bicarbonate and water. J Chem Phys 76:5470–5472

    Google Scholar 

  • Horita J, Clayton RN (2007) Comment on the studies of oxygen isotope fractionation between calcium carbonates and water at low temperatures by Zhou and Zheng (2003; 2005). Geochim Cosmochim Acta 71:3131–3135

    Google Scholar 

  • Jones B (2017a) Review of aragonite and calcite crystal morphogenesis in thermal spring systems. Sediment Geol 354:9–23

    Google Scholar 

  • Jones B (2017b) Review of calcium carbonate polymorph precipitation in spring systems. Sediment Geol 353:64–75

    Google Scholar 

  • Jones B, Peng X (2014) Hot spring deposits on a cliff face: a case study from Jifei, Yunnan Province, China. Sediment Geol 302:1–28

    Google Scholar 

  • Jones B, Peng X (2016) Mineralogical, crystallographic, and isotopic constraints on the precipitation of aragonite and calcite at Shiqiang and other hot springs in Yunnan Province, China. Sediment Geol 345:103–125

    Google Scholar 

  • Jones B, Renaut RW (1995) Noncrystallographic cendrites from hot-spring deposits at Lake Bogoria, Kenya. J Sediment Res A65:154–169

    Google Scholar 

  • Jones B, Renaut RW (2010) Calcareous spring deposits in continental settings. In: Alonso-Zarza AM, Tanner LH (eds) Developments in sedimentology: carbonates in continental settings: facies, environments and processes. Elsevier, Amsterdam, pp 177–224

    Google Scholar 

  • Jones B, Renaut RW, Rosen MR (1996) High-temperature (%3e90 °C) calcite precipitation at Waikite Hot Springs, North Island, New Zealand. J Geol Soc Lond 153:481–496

    Google Scholar 

  • Kele S, Demény A, Siklósy Z et al (2008) Chemical and stable isotope composition of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary: depositional facies and non-equilibrium fractionation. Sediment Geol 211:53–72

    Google Scholar 

  • Kele S, Özkul M, Fórizs I et al (2011) Stable isotope geochemical study of Pamukkale travertines: new evidences of low-temperature non-equilibrium calcite-water fractionation. Sediment Geol 238:191–212

    Google Scholar 

  • Kele S, Breitenbach SF, Capezzuoli E et al (2015) Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: a study of travertines and tufas in the 6–95 °C temperature range. Geochim Cosmochim Acta 168:172–192

    Google Scholar 

  • Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475

    Google Scholar 

  • Kim ST, O’Neil JR (2005) Comment on “An experimental study of oxygen isotope fractionation between inorganically precipitated aragonite and water at low temperatures” by G.-T. Zhou and Y.-F Zheng. Geochim Cosmochim Acta 69:3195–3197

    Google Scholar 

  • Kim S-T, O’Neil JR, Hillaire-marcel C et al (2007) Oxygen isotope fractionation between synthetic aragonite and water. Influence of temperature and Mg2+ concentrations. Geochim Cosmochim Acta 71:4704–4715

    Google Scholar 

  • Kitano Y (1963) Geochemistry of calcareous deposits found in hot springs. J Earth Sci 11:68–100

    Google Scholar 

  • Lachniet MS (2015) Are aragonite stalagmites reliable paleoclimate proxies ? Tests for oxygen isotope time-series replication and equilibrium. GSA Bull 1521–1533

  • Lachniet MS, Bernal JP, Asmerom Y et al (2012) A 2400-yr Mesoamerican rainfall history links climate and cultural change in Mexico. Geology 40:259–262

    Google Scholar 

  • Last WM (1989) Continental brines and evaporites of the northern Great Plains of Canada. Sediment Geol 64:207–221

    Google Scholar 

  • Last WM, Vance RE, Wilson S, Smol JP (1998) A multi-proxy limnologic record of rapid early-Holocene hydrologic change on the northern Great Plains, southwestern Saskatchewan, Canada. Holocene 8:503–520

    Google Scholar 

  • Lécuyer C, Hutzler A, Amiot R et al (2012) Carbon and oxygen isotope fractionations between aragonite and calcite of shells from modern molluscs. Chem Geol 332–333:92–101

    Google Scholar 

  • Li HC, Lee ZH, Wan NJ et al (2011) The δ18O and δ13C records in an aragonite stalagmite from Furong Cave, Chongqing, China: A-2000-year record of monsoonal climate. J Asian Earth Sci 40:1121–1130

    Google Scholar 

  • Li TY, Shen CC, Li HC et al (2012) Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China. Geochim Cosmochim Acta 75:4140–4156

    Google Scholar 

  • Liu Z, Li H, You C et al (2006) Thickness and stable isotopic characteristics of modern seasonal climate-controlled sub-annual travertine laminas in a travertinedepositing stream at Baishuitai, SW China: implications for paleoclimate reconstruction. Environ Geol 51:257–265

    Google Scholar 

  • Liu Z, Sun H, Baoying L et al (2010) Wet-dry seasonal variations of hydrochemistry and carbonate precipitation rates in a travertinedepositing canal at Baishuitai, Yunnan, SW China: implications for the formation of biannual laminae in travertine and for climatic reconstruction. Chem Geol 273:258–266

    Google Scholar 

  • Lojen S, Dolenec T, Vokal B et al (2004) C and O stable isotope variability in recent freshwater carbonates (River Krka, Croatia). Sedimentology 51:361–375

    Google Scholar 

  • Lojen S, Trkov A, Ščančar J et al (2009) Continuous 60-year stable isotopic and earth-alkali element records in a modern laminated tufa (Jaruga, river Krka, Croatia): implications for climate reconstruction. Chem Geol 258:242–250

    Google Scholar 

  • Mas JR, Alonso A, Guimera J (1993) Evolución tectonosedimentaria de una cuenca extensional intraplaca: la cuenca finijurásica-eocretácica de los Cameros (La Rioja-Soria). Rev Soc Geol Esp 6:129–144

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Google Scholar 

  • Minissale A (2004) Origin, transport and discharge of CO2 in central Italy. Earth-Sci Rev 66:89–141

    Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176

    Google Scholar 

  • O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558

    Google Scholar 

  • Osácar C, Arenas C, Vázquez-Urbez M et al (2013) Environmental factors controlling the δ13C and δ18O variations of recent fluvial tufas: a 12-year record from the monasterio de piedra natural park (NE Iberian Peninsula). Sediment Geol 83:309–322

    Google Scholar 

  • Osácar C, Arenas C, Auqué LF et al (2016) Discerning the interactions between environmental parameters reflected in δ13C and δ18O of recent fluvial tufas: lessons from a Mediterranean climate region. Sediment Geol 345:126–144

    Google Scholar 

  • Özkul M, Kele S, Gökgöz A et al (2013) Comparison of the Quaternary travertine sites in the Denizli extensional basin based on their depositional and geochemical data. Sediment Geol 294:179–204

    Google Scholar 

  • Panichi C, Tongiorgi E (1976) Carbon isotopic composition of CO2 from springs, fumaroles, mofettes and travertines of central and southern Italy: a preliminary prospection method of geothermal areas. In: Proceedings 2nd U.N. Symposium on the Development and Use of Geothermal Energy, San Francisco. pp 815–825

  • Parkhurst DL, Appelo CAJ (2013) Description of Input and Examples for PHREEQC Version 3. A Computer Program for Speciation, Batch Reaction, One Dimensional Transport, and Inverse Geochemical Calculations. In: U.S. Geological Survey (ed) Techniques and Methods, book 6, chap. A43. U.S. Geological Survey, Denver, Colorado

  • Patterson WP, Smith GR, Lohmann KC, Kyger CL (1993) Continental Paleothermometry And Seasonality Using The Isotopic Composition Of Aragonitic Otoliths Of Freshwater Fishes. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. American Geophysical Union, pp 191–202

  • Pedley M (2009) Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology 56:221–246

    Google Scholar 

  • Peng X, Jones B (2012) Rapid precipitation of silica (opal-A) disguises evidence of biogenicity in hihgh-temperature geothermal deposits: case study from Dagunguo hot spring, China. Sediment Geol 257–258:45–62

    Google Scholar 

  • Pentecost A (2005) Travertine. Springer Science & Business Media

  • Reyes E, Pérez del Villar L, Delgado A et al (1998) Carbonatation processes at the El Berrocal analogue granitic systema (Spain): mineralogical and isotopic study. Chem Geol 150:293–315

    Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Google Scholar 

  • Rodrigo-Naharro J, Herrero MJ, Delgado-Huertas A et al (2019) Current travertines precipitation related to artificial CO2 leakages from a natural reservoir (Gañuelas-Mazarrón Tertiary Basin, SE Spain). J Hydrol 577:123997

    Google Scholar 

  • Rodríguez-Berriguete Á, Alonso-Zarza AM, Martín-García R, del Cabrera MC (2018) Sedimentology and geochemistry of a human-induced tufa deposit: Implications for palaeoclimatic research. Sedimentology 65:2253–2277

    Google Scholar 

  • Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430

    Google Scholar 

  • Sánchez JA, Coloma P (1998) Hidrogeología de los manantiales termales de Arnedillo. Zubía Monogr 10:11–25

    Google Scholar 

  • Scheele N, Hoefs J (1992) Carbon isotope fractionation between calcite, graphite and CO2: an experimental study. Contrib Mineral Petrol 112:35–45

    Google Scholar 

  • Sierralta M, Kele S, Melcher F et al (2010) Uranium-series dating of travertine from Süttő: implications for reconstruction of environmental change in Hungary. Quat Int 222:178–193

    Google Scholar 

  • Szaran J (1997) Achievement of carbon isotope equilibrium in the system HCO3- (solution)-CO2 (gas). Chem Geol 142:79–86

    Google Scholar 

  • Thorrold SR, Campana SE, Jones CM, Swart PK (1997) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fractionation in aragonitic otoliths of marine fish. Pergamon Geochim Cosmochim Acta 61:2909–2919

    Google Scholar 

  • Turner JV (1982) Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochim Cosmochim Acta 46:1183–1191

    Google Scholar 

  • Wang Z, Gaetani G, Liu C, Cohen A (2013) Oxygen isotope fractionation between aragonite and seawater: developing a novel kinetic oxygen isotope fractionation model. Geochim Cosmochim Acta 117:232–251

    Google Scholar 

  • Wang H, Yan Y, Liu Z (2014) Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: implications for paleoclimatic interpretations. Geochim Cosmochim Acta 125:34–48

    Google Scholar 

  • Wassenburg JA, Scholz D, Jochum KP et al (2016) Determination of aragonite trace element distribution coefficients from speleothem calcite–aragonite transitions. Geochim Cosmochim Acta 190:347–367

    Google Scholar 

  • White RMP, Dennis PF, Atkinson TC (1999) Experimental calibration and field investigation of the oxygen isotopic fractionation between biogenic aragonite and water. Rapid Commun Mass Spectrom 13:1242–1247

    Google Scholar 

  • Yan H, Sun H, Liu Z (2012) Equilibrium vs. kinetic fractionation of oxygen isotopes in two low-temperature travertine-depositing systems with differing hydrodynamic conditions at Baishuitai, Yunnan SW China. Geochim Cosmochim Acta 95:63–78

    Google Scholar 

  • Zavdlav S, Rozic B, Dolenec M, Lojen S (2017) Stable isotopic and elemental characteristics of recent tufa from a karstic Krka River (south-east Slovenia): useful environmental proxies? Sedimentology 64:808–831

    Google Scholar 

  • Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–114

    Google Scholar 

  • Zheng YF (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem J 33:109–126

    Google Scholar 

  • Zheng YF (2011) On the theoretical calculations of oxygen isotope fractionation factors for carbonate-water systems. Geochem J 45:341–354

    Google Scholar 

  • Zhou G-T, Zheng Y-F (2003) An experimental study of oxygen isotope fractionation between inorganically precipitated aragonite and water at low temperatures. Geochim Cosmochim Acta 67:387–399

    Google Scholar 

Download references

Acknowledgements

M. Blasco has worked in this study thanks to a scholarship from the Ministry of Science, Innovation and Universities of Spain, for the Training of University Teachers (ref. FPU14/01523). This study forms part of the activities of the Geochemical Modelling Group (University of Zaragoza; Aragón Government). Authors would like to acknowledge the use of “Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza” and the technical assistance of Enrique Oliver from the Earth Sciences Department of the University of Zaragoza. The helpfulness of the Becquer Spa staff during the sampling is also grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Blasco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blasco, M., Auqué, L.F., Gimeno, M.J. et al. Stable isotope characterisation of recent aragonite travertine deposits associated with the Fitero thermal waters (Spain). Int J Earth Sci (Geol Rundsch) 109, 877–892 (2020). https://doi.org/10.1007/s00531-020-01834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01834-8

Keywords

Navigation