Skip to main content
Log in

Extracellular Oxidases of Basidiomycete Neonothopanus nambi: Isolation and Some Properties

  • BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Using the original technique of treating biomass with β-glucosidase, a pool of extracellular fungal enzymes was obtained for the first time from the mycelium of basidiomycete Neonothopanus nambi. Two protein fractions containing enzymes with oxidase activity were isolated from the extract by gel-filtration chromatography and conventionally called F1 and F2. Enzyme F1 has a native molecular weight of 80–85 kDa and does not contain chromophore components; however, it catalyzes the oxidation of veratryl alcohol with Km = 0.52 mM. Probably, this enzyme is an alcohol oxidase. Enzyme F2 with a native molecular weight of approximately 60 kDa is a FAD-containing protein. It catalyzes the cooxidation of phenol with 4-aminoantipyrine without the addition of exogenous hydrogen peroxide, which distinguishes it from the known peroxidases. It was assumed that this enzyme may be a mixed-function oxidase. F2 oxidase has Km value 0.27 mM for phenol. The temperature optimums for oxidases F1 and F2 are 22–35 and 55–70°C, and pH optimums are 6 and 5, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Xu, F., Applications of oxidoreductases: recent progress, Ind. Biotechn., 2005, no. 1, pp. 38–50. https://doi.org/10.1089/ind.2005.1.38

  2. Ciaurriz, P., Bravo, E., and Hamad-Schifferli, K., Effect of architecture on the activity of glucose oxidase/horseradish peroxidase/carbon nanoparticle conjugates, J. Colloid Interface Sci., 2014, vol. 414, pp. 73–81. https://doi.org/10.1016/j.jcis.2013.09.039

    Article  CAS  PubMed  Google Scholar 

  3. Yang, H., Wei, W., and Liu, S., Monodispersed silica nanoparticles as carrier for co-immobilization of bi-enzyme and its application for glucose biosensing, Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 2014, vol. 125, pp. 183–188. https://doi.org/10.1016/j.saa.2014.01.004

    Article  CAS  Google Scholar 

  4. Tan, H., Guo, S., Dinh, N., et al., Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions, Nat. Commun., 2017, vol. 8, no. 1, p. 663. https://doi.org/10.1038/s41467-017-00757-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martínková, L., Kotik, M., Marková, E., and Homolka, L., Biodegradation of phenolic compounds by basidiomycota and its phenol oxidases: a review, Chemosphere, 2016, vol. 149, pp. 373–382. https://doi.org/10.1016/j.chemosphere.2016.01.022

    Article  Google Scholar 

  6. Martinez, A.T., Ruiz-Duenas, F.J., Camarero, S., et al., Oxidoreductases on their way to industrial biotransformations, Biotechnol. Adv., 2017, vol. 35, no. 6, pp. 815–831. https://doi.org/10.1016/j.biotechadv.2017.06

    Article  CAS  PubMed  Google Scholar 

  7. Alneyadi, A.H., Rauf, M.A., and Ashraf, S.S., Oxidoreductases for the remediation of organic pollutants in water—a critical review, Crit. Rev. Biotechnol., 2018, vol. 38, no. 7, pp. 971–988. https://doi.org/10.1080/07388551.2017.1423275

    Article  CAS  PubMed  Google Scholar 

  8. Tamaru, Y., Umezawa, K., and Yoshida, M., Characterization of an aryl-alcohol oxidase from the plant saprophytic basidiomycete Coprinopsis cinerea with broad substrate specificity against aromatic alcohols, Biotechnol. Lett., 2018, vol. 40, no. 7, pp. 1077–1086. https://doi.org/10.1007/s10529-018-2534-3

    Article  CAS  PubMed  Google Scholar 

  9. Wang, N., Ren, R., Jia, R., et al., Expression of a fungal manganese peroxidase in Escherichia coli: a comparison between the soluble and refolded enzymes, BMC Biotechnol., 2016, vol. 16, no. 87. https://doi.org/10.1186/s12896-016-0317-2

  10. Zdarta, J., Meyer, A.S., Jesionowski, T., et al., Developments in support materials for immobilization of oxidoreductases: a comprehensive review, Adv. Colloid Interface Sci., 2018, vol. 258, pp. 1–20. https://doi.org/10.1016/j.cis.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  11. Mogilnaya, O.A., Ronzhin, N.O., Artemenko, K.S., et al., Morphological properties and levels of extracellular peroxidase activity and light emission of the basidiomycete Armillaria borealis treated with β-glucosidase and chitinase, Mycosphere, 2017, vol. 8, no. 4, pp. 649–659. https://doi.org/10.5943/mycosphere/8/4/11

    Article  Google Scholar 

  12. Mogilnaya, O.A., Ronzhin, N.O., and Bondar, V.S., Estimating levels of light emission and extracellular peroxidase activity of mycelium of luminous fungus Neonothopanus nambi treated with β-glucosidase, Curr. Res. Environ. Appl. Mycol., 2018, vol. 8, no. 1, pp. 75–85. https://doi.org/10.5943/cream/8/1/6

    Article  Google Scholar 

  13. Mogilnaya, O.A., Ronzhin, N.O., Artemenko, K.S., and Bondar, V.S., Creation of bifunctional indicating complex based on nanodiamonds and extracellular oxidases of luminous fungus Neonothopanus nambi,Dokl. Biochem. Biophys., 2018, vol. 480, pp. 135–138. https://doi.org/10.1134/S160767291803002X

    Article  CAS  PubMed  Google Scholar 

  14. Sützl, L., Laurent, C.V.F.P., Abrera, A.T., Schutz, G., Ludwig, R., and Haltrich, D., Multiplicity of enzymatic functions in the CAZy AA3 family, Appl. Microbiol. Biotechnol., 2018, vol. 102, pp. 2477–2492. https://doi.org/10.1007/s0025301887840

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hernandez-Ortega, A., Ferreira, P., and Martinez, A.T., Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation, Appl. Microbiol. Biotechnol., 2012, vol. 93, pp. 1395–1410. https://doi.org/10.1007/s0025301138368

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. O. Ronzhin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronzhin, N.O., Mogilnaya, O.A., Artemenko, K.S. et al. Extracellular Oxidases of Basidiomycete Neonothopanus nambi: Isolation and Some Properties. Dokl Biochem Biophys 490, 38–42 (2020). https://doi.org/10.1134/S1607672920010135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1607672920010135

Keywords:

Navigation