Skip to main content
Log in

The First Passage Sets of the 2D Gaussian Free Field: Convergence and Isomorphisms

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In a previous article, we introduced the first passage set (FPS) of constant level \(-a\) of the two-dimensional continuum Gaussian free field (GFF) on finitely connected domains. Informally, it is the set of points in the domain that can be connected to the boundary by a path along which the GFF is greater than or equal to \(-a\). This description can be taken as a definition of the FPS for the metric graph GFF, and in the current article, we prove that the metric graph FPS converges towards the continuum FPS in the Hausdorff distance. We also draw numerous consequences; in particular, we obtain a relatively simple proof of the fact that certain natural interfaces of the metric graph GFF converge to \(\hbox {SLE}_4\) level lines. These results improve our understanding of the continuum GFF, by strengthening its relationship with the critical Brownian loop-soup. Indeed, a new construction of the FPS using clusters of Brownian loops and excursions helps to strengthen the known GFF isomorphism theorems, and allows us to use Brownian loop-soup techniques to prove technical results on the geometry of the GFF. We also obtain a new representation of Brownian loop-soup clusters, and as a consequence, we prove that the clusters of a critical Brownian loop-soup admit a non-trivial Minkowski content in the gauge \(r\mapsto |\log r|^{1/2}r^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For the precise definition of thin local sets see [59].

  2. Here \(2\lambda =\sqrt{\pi /2}\) is the height gap. See (3.1) and the discussion thereafter.

  3. For a precise definition of non-polar sets see Definition 3.43 of [51].

  4. Here and elsewhere this means piecewise constant that changes only finitely many times.

  5. In [33], Section 5.6 the authors rather consider the loop measure associated to a standard Brownian motion. This is just a matter of a change of time \(ds = dt/\sqrt{2}\).

  6. It can be found in the middle of the proof of Lemma 6, starting with the phrase “The goal of the following few paragraphs is to explain that the recentered occupation time fields of the cable-system loop-soup can be made to converge to the renormalized occupation time field of\(\mathcal {L}\)”. In fact, their convergence in terms of finite-dimensional marginals can be strenghtened to a convergence, for example, in \(H^{-1-\varepsilon }(D)\), but we will not need it here.

References

  1. Adams, R.A., Fournier, J.: Sobolev Spaces, vol. 140. Academic Press, London (2003)

    MATH  Google Scholar 

  2. Ahlfors, L.V.: Conformal Invariants: Topics in Geometric Function Theory, vol. 371. American Mathematical Society, Philadelphia (2010)

    MATH  Google Scholar 

  3. Aru, J.: The Geometry of the Gaussian Free Field Combined with SLE Processes and the KPZ Relation. Ph.D. thesis, Ecole Normale Supérieure de Lyon (2015)

  4. Aru, J., Lupu, T., Sepúlveda, A.: The first passage sets of the 2D Gaussian free field. Probab. Theory Relat. Fields (2019). https://doi.org/10.1007/s00440-019-00941-1

  5. Aru, J., Lupu, T., Sepúlveda, A.: Excursion decomposition of the 2D Gaussian free field (2020) (in preparation)

  6. Aru, J., Sepúlveda, A.: Survey in preparation (2018)

  7. Aru, J., Sepúlveda, A.: Two-valued local sets of the 2D continuum Gaussian free field: connectivity, labels, and induced metrics. Electron. J. Probab. 23(61) (2018)

  8. Aru, J., Sepúlveda, A., Werner, W.: On bounded-type thin local sets of the two-dimensional Gaussian free field. J. Inst. Math. Jussieu 18(3), 591–618 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Baxter, J.R., Chacon, R.v.S.: The equivalence of diffusions on networks to Brownian motion. In: Beals, R., Beck, A., Bellow, A., Hajian, A. (eds.) Conference on Modern Analysis and Probability. Contemporary Mathematics, vol. 26, pp. 33–48. American Mathematical Society, Philadelphia (1984)

  10. Biskup, M., Louidor, O.: Conformal symmetries in the extremal process of two-dimensional discrete Gaussian free field. Commun. Math. Phys. (2014) (to appear). arXiv preprint arXiv:1410.4676

  11. Brydges, D., Fröhlich, J., Sokal, A.: A new proof of the existence and non-triviality of the continuum \(\phi ^{4}_{2}\) and \(\phi ^{4}_{3}\) quantum field theories. Comm. Math. Phys. 91, 141–186 (1983)

    ADS  MathSciNet  Google Scholar 

  12. Brydges, D., Fröhlich, J., Sokal, A.: The random walk representation of classical spin systems and correlation inequalities. II. The skeleton inequalities. Comm. Math. Phys. 91, 117–139 (1983)

    ADS  MathSciNet  Google Scholar 

  13. Brydges, D., Fröhlich, J., Spencer, T.: The random walk representation of classical spin systems and correlation inequalities. Comm. Math. Phys. 83(1), 123–150 (1982)

    ADS  MathSciNet  Google Scholar 

  14. Chelkak, D., Smirnov, S.: Discrete complex analysis on isoradial graphs. Adv. Math. 228(3), 1590–1630 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Comerford, M.: The Carathéodory topology for multiply connected domains I. Open Math. 11(2), 322–340 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Ding, J., Li, L.: Chemical distances for percolation of planar Gaussian free fields and critical random walk loop soups. Comm. Math. Phys. 360(2), 523–553 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Dubédat, J.: Commutation relations for Schramm–Loewner evolutions. Comm. Pure Appl. Math. 60(12), 1792–1847 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Dubédat, J.: SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22(4), 995–1054 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Dynkin, E.: Markov processes as a tool in field theory. J. Funct. Anal. 50(2), 167–187 (1983)

    MathSciNet  MATH  Google Scholar 

  20. Dynkin, E.: Gaussian and non-Gaussian random fields associated with Markov processes. J. Funct. Anal. 55(3), 344–376 (1984)

    MathSciNet  MATH  Google Scholar 

  21. Dynkin, E.: Local times and quantum fields. In: Cinlar, E., Chung, K.L., Getoor, R.K. (eds.) Seminar on Stochastic Processes, Gainesville 1983, Progress in Probability and Statistics, vol. 7, pp. 69–84. Birkhauser, Boston (1984)

    Google Scholar 

  22. Eisenbaum, N.: Une version sans conditionnement du théorème d’isomorphisme de Dynkin. In: Azéma, J., Emery, M., Meyer, P.A., Yor, M. (eds.) Séminaire de Probabilités XXIX. Lecture Notes in Mathematics, vol. 1613, pp. 266–289. Springer, Berlin (1995)

    MATH  Google Scholar 

  23. Eisenbaum, N., Kaspi, H., Marcus, M.B., Rosen, J., Shi, Z.: A Ray–Knight theorem for symmetric Markov processes. Ann. Probab. 28(4), 1781–1796 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Enriquez, N., Kifer, Y.: Markov chains on graphs and Brownian motion. J. Theor. Probab. 14(2), 495–510 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Fitzsimmons, P., Rosen, J.: Markovian loop soups: permanental processes and isomorphism theorems. Electron. J. Probab 19(60) (2014)

  26. Fröhlich, J.: On the triviality of \(\lambda \phi ^{4}_{d}\) theories and the approach to the critical point in \(d \ge 4\) dimensions. Nucl. Phys. B 200, 281–296 (1982)

    ADS  Google Scholar 

  27. Gawedzki, K.: Lectures on conformal field theory. Nucl. Phys. B 328, 733–752 (1996)

    ADS  Google Scholar 

  28. Janson, S.: Bounds on the distribution of extremal values of a scanning process. Stoch. Process. Appl. 18, 313–328 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Janson, S.: Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics, vol. 129. Cambridge University Press, Cambridge (1997)

  30. Kasel, A., Lévy, T.: Covariant Symanzik identities. arXiv preprint arXiv:1607.05201 (2016)

  31. Koebe, P.: Über die Konforme Abbildung Endlich-und Unendlich-Vielfach Zusammenhängender Symmetrischer Bereiche. Acta Math. 43(1), 263–287 (1922)

    MathSciNet  MATH  Google Scholar 

  32. Lacoin, H., Rhodes, R., Vargas, V.: Large deviations for random surfaces: the hyperbolic nature of Liouville Field Theory. arXiv prpeprint arXiv:1401.6001 (2014)

  33. Lawler, G.: Conformally Invariant Processes in the Plane, Mathematics Surveys Monographs, vol. 114. American Mathematical Society, Philadelphia (2008)

  34. Lawler, G., Limic, V.: Random Walk: A Modern Introduction, Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge (2010)

  35. Lawler, G., Schramm, O., Werner, W.: Conformal restriction: the chordal case. J. Am. Math. Soc. 16(4), 917–955 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Lawler, G., Trujillo-Ferreras, J.: Random walk loop soup. Trans. Am. Math. Soc. 359(2), 767–787 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Lawler, G., Werner, W.: The Brownian loop soup. Probab. Theory Relat. Fields 128(4), 565–588 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Le Jan, Y.: Markov loops, determinants and Gaussian fields. arXiv preprint arXiv:1012.4797 (2007)

  39. Le Jan, Y.: Markov loops and renormalization. Ann. Probab. 38(3), 1280–1319 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Le Jan, Y.: Markov paths, loops and fields. In: 2008 St-Flour Summer School, Lecture Notes in Mathematics, vol. 2026. Springer, Berlin (2011)

  41. Lupu, T.: From loop clusters and random interlacements to the free field. Ann. Probab. 44(3), 2117–2146 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Lupu, T.: Loop percolation on discrete half-plane. Electron. Commun. Probab. 21(30) (2016)

  43. Lupu, T.: Convergence of the two-dimensional random walk loop soup clusters to CLE. J. Eur. Math. Soc. 21(4), 1201–1227 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Lupu, T., Werner, W.: The random pseudo-metric on a graph defined via the zero-set of the Gaussian free field on its metric graph. Probab. Theory Relat. Fields 171, 775–818 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Marcus, M.B., Rosen, J.: Markov Processes, Gaussian Processes and Local Times, vol. 100. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  46. Miller, J., Sheffield, S.: The GFF and CLE(4) (2011). Slides, Talks and Private Communications

  47. Miller, J., Sheffield, S.: Imaginary geometry I: interacting SLEs. Probab. Theory Relat. Fields 164(3–4), 553–705 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Miller, J., Sheffield, S.: Imaginary geometry II: reversibility of \(\text{ SLE }_\kappa \)(\(\rho _1\);\(\rho _2\)) for \(\kappa \in (0, 4)\). Ann. Probab. 44(3), 1647–1722 (2016)

    MathSciNet  Google Scholar 

  49. Miller, J., Sheffield, S.: Imaginary geometry III: reversibility of \(\text{ SLE }_\kappa \)(\(\rho _1\);\(\rho _2\)) for \(\kappa \in (4, 8)\). Ann. Math. 184(2), 455–486 (2016)

    MathSciNet  Google Scholar 

  50. Miller, J., Sheffield, S.: Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees. Probab. Theory Relat. Fields 169, 729–869 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Mörters, P., Peres, Y.: Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 30. Cambridge University Press, Cambridge (2010)

  52. Peltola, E., Wu, H.: Global and local multiple SLEs for \(\kappa \le 4\) and connection probabilities for level lines of GFF. Comm. Math. Phys. 336(2), 469–536 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Pitt, L.: Positively correlated normal variables are associated. Ann. Probab. 10(2), 496–499 (1982)

    MathSciNet  MATH  Google Scholar 

  54. Qian, W., Werner, W.: The law of a point process of Brownian excursions in a domain is determined by the law of its trace. Electron. J. Probab. 23(128) (2018)

  55. Qian, W., Werner, W.: Decomposition of Brownian loop-soup clusters. J. Eur. Math. Soc. 21(10), 3225–3253 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  57. Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Schramm, O., Sheffield, S.: A contour line of the continuum Gaussian free field. Probab. Theory Relat. Fields 157(1–2), 47–80 (2013)

    MathSciNet  MATH  Google Scholar 

  59. Sepúlveda, A.: On thin local sets of the Gaussian free field. Ann. Inst. Henri Poincaré Probab. Stat. 55(3), 1797–1813 (2019)

    MathSciNet  MATH  Google Scholar 

  60. Shamov, A.: On Gaussian multiplicative chaos. J. Funct. Anal. 270(9), 3224–3261 (2016)

    MathSciNet  MATH  Google Scholar 

  61. Sheffield, S.: Local Sets of the Gaussian Free Field: Slides and Audio (2005)

  62. Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139(3), 521–541 (2007)

    MathSciNet  MATH  Google Scholar 

  63. Sheffield, S., Werner, W.: Conformal loop ensembles: the Markovian characterization and the loop-soup construction. Ann. Math. 176(3), 1827–1917 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Simon, B.: The \(P(\varPhi )_{2}\) Euclidean (Quantum) Field Theory. Princeton Series Physics. Princeton University Press, Princeton (1974)

    Google Scholar 

  65. Symanzik, K.: Euclidean quantum field theory I. Equations for a scalar model. J. Math. Phys. 7(3), 510–525 (1966)

    ADS  MathSciNet  Google Scholar 

  66. Symanzik, K.: Euclidean quantum field theory. In: Scuola intenazionale di Fisica “Enrico Fermi”. XLV Corso., pp. 152–223. Academic Press, New York (1969)

  67. Sznitman, A.S.: An isomorphism theorem for random interlacements. Electron. Commun. Probab. 17(9) (2012)

  68. Sznitman, A.S.: Topics in occupation times and gaussian free field. In: Zurich Lectures Advanced in Mathematics. European Mathematical Society, Zurich (2012)

  69. Sznitman, A.S.: On scaling limits and Brownian interlacements. Bull. Braz. Math. Soc. 44(4), 555–592 (2013)

    MathSciNet  MATH  Google Scholar 

  70. van den Berg, R., Kesten, H.: A note on disjoint-occurrence inequalities for marked Poisson point processes. J. Appl. Probab. 33(2), 420–426 (1996)

    MathSciNet  MATH  Google Scholar 

  71. van de Brug, T., Camia, F., Lis, M.: Random walk loop soups and conformal loop ensembles. Probab. Theory Relat. Fields 166(1), 553–584 (2016)

    MathSciNet  MATH  Google Scholar 

  72. Wang, M., Wu, H.: Level lines of Gaussian free field I: zero-boundary GFF. Stoch. Process. Appl. 127, 1045–1124 (2016)

    MathSciNet  MATH  Google Scholar 

  73. Werner, W.: Conformal restriction and related questions. Probab. Surv. 2, 145–190 (2005)

    MathSciNet  MATH  Google Scholar 

  74. Werner, W.: Topics on the GFF and CLE(4) (2016)

  75. Werner, W., Wu, H.: From CLE\((\kappa )\) to SLE\((\kappa ,\rho )\)’s. Electron. J. Probab. 18, (2013)

Download references

Acknowledgements

The authors wish to thank D. Chelkak for helpful discussions, F. Viklund for useful comments on an earlier version of this paper, W. Werner for many things, and B. Werness for his beautiful simulations and interesting discussions. This work was partially supported by the Swiss National Science Foundation Grants SNF-155922, and SNF-175505. The authors are thankful to the National Centre of Competence in Research Swissmap. A. Sepúlveda was supported by the European Research Council Grant LiKo 676999. T. Lupu acknowledges the support of Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zurich Foundation, and that of the Agence Nationale de la Recherche Project ANR-16-CE93-0003—MALIN. The work of this paper was finished during a visit of J.Aru and A. Sepúlveda to Paris in May 2018, on the invitation by T. Lupu, funded by Projets Exploratoires Premier Soutien “Jeunes chercheuses et jeunes chercheurs” 2018 of Institut National des Sciences Mathématiques et de leurs Interactions (INSMI). A. Sepúlveda would also like to thank the hospitality of Núcleo Milenio “Stochastic models of complex and disordered systems” for repeated invitation to Santiago, where part of this paper was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus Lupu.

Additional information

Communicated by H. Duminil-Copin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 2.3

If \(u\equiv 0\), there are no excursions we are in the setting of Le Jan’s isomorphism for loop-soups [38, 40]. If u is constant and strictly positive, then the proposition follows by combining Le Jan’s isomorphism and the generalized second Ray-Knight theorem [45, 68]. Indeed, then one can consider the whole boundary \(\partial \mathcal {G}\) as a single vertex, and the boundary to boundary excursions as excursions outside this vertex.

The case of u non-constant can be reduced to the previous one. We first assume that u is strictly positive on \(\partial \mathcal {G}\). The general case can be obtained by taking the limit. We define new conductances on the edges:

$$\begin{aligned} \widehat{C}(x,y):=C(x,y)u(x)u(y), \end{aligned}$$

where x and y are neighbours in \(\mathcal {G}\). Let \(\hat{\phi }\) be the 0 boundary GFF associated to the new conductances \(\widehat{C}\). We claim that

$$\begin{aligned} (\hat{\phi }(x))_{x\in V} {\mathop {=}\limits ^{(d)}} (u(x)^{-1}\phi (x))_{x\in V}. \end{aligned}$$

To check the identity in law it is sufficient to show the equality of energy functions, since the latter give the densities (2.1). Let \((f(x))_{x\in \mathcal G}\) be such that for all \(x\in \partial \mathcal G\), \(f(x)=0\) and compute

$$\begin{aligned} \mathcal {E}_{\mathcal {G}}(uf,uf)= & {} -\sum _{x\in V}\sum _{y\sim x} u(x)f(x)C(x,y)(u(y)f(y)-u(x)f(x))\\= & {} -\sum _{x\in V}\sum _{y\sim x} u(x)f(x)C(x,y)u(y)(f(y)-f(x))\\&+\sum _{x\in V}\sum _{y\sim x} C(x,y)(u(y)-u(x))u(x)f(x)^{2}\\= & {} -\sum _{x\in V}\sum _{y\sim x} f(x)\widehat{C}(x,y)(f(y)-f(x))\\&+ \sum _{x\in \partial \mathcal {G}}\sum _{y\sim x} C(x,y)(u(y)-u(x))u(x)f(x)^{2}\\= & {} \widehat{\mathcal {E}}(f,f)+0. \end{aligned}$$

From the second to the third line we used that u is harmonic.

Now, we can apply the case of constant boundary conditions to \({\frac{1}{2}(\hat{\phi }+1)^{2}}\). We get that it is distributed like the occupation field of a loop-soup of parameter \(\alpha =1/2\) and an independent Poissonian family of excursions from \(\hat{x}\) to \(\hat{x}\), both associated to the jump rates \(\widehat{C}(x,y)\). If on these paths we perform the time change

$$\begin{aligned} dt=u(x)^{-2} ds, \end{aligned}$$
(5.2)

we get \(\mathcal {L}^\mathcal {G}_{1/2}\) and \(\varXi _{u}^{\mathcal {G}}\). The time change (5.2) multiplies the occupation field by \(u^{2}\), which exactly transforms \((\hat{\phi }+1)^{2}\) into \((\phi +u)^{2}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aru, J., Lupu, T. & Sepúlveda, A. The First Passage Sets of the 2D Gaussian Free Field: Convergence and Isomorphisms. Commun. Math. Phys. 375, 1885–1929 (2020). https://doi.org/10.1007/s00220-020-03718-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03718-z

Navigation