Skip to main content
Log in

Substrate Diversity of L-Threonic Acid Dehydrogenase Homologs

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Despite physiological importance of aldonic sugar acids for living organisms, little is known about metabolic pathways of these compounds. Here, we investigated the functional diversity of homologs of L-threonic acid dehydrogenase (ThrDH; UniProt ID: Q0KBC7), an enzyme composed of two NAD-binding domains (PF14833 and PF03446). Ten ThrDH homologs with different genomic context were studied; seven new enzymatic activities were identified, such as (R)-pantoate dehydrogenase, L-altronic acid dehydrogenase, 6-deoxy-L-talonate dehydrogenase, L-idonic acid dehydrogenase, D-xylonic acid dehydrogenase, D-gluconic acid dehydrogenase, and 2-hydroxy-3-oxopantoate reductase activities. Two associated metabolic pathways were identified: L-idonic acid dehydrogenase was found to be involved in the degradation of L-idonic acid through oxidation/decarboxylation in Agrobacterium radiobacter K84, while 2-hydroxy-3-oxopantoate reductase was found to participate in D-glucarate catabolism through dehydration/cleavage in Ralstonia metallidurans CH34.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Table 1.
Table 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

EryDH:

D-erythronic acid dehydrogenase

PanDH:

(R)-pantoate dehydrogenase

SSN:

sequence similarity network

ThrDH:

L-threonic acid dehydrogenase

REFERENCES

  1. Ramachandran, S., Fontanille, P., Pandey, A., and Larroche, C. (2006) Gluconic acid: properties, applications and microbial production, Food Technol. Biotechnol., 44, 185-195.

    CAS  Google Scholar 

  2. Smirnoff, N. (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule, Curr. Opin. Plant Biol., 3, 229-235.

    Article  CAS  Google Scholar 

  3. Vimr, E. R., Kalivoda, K. A., Deszo, E. L., and Steenbergen, S. M. (2004) Diversity of microbial sialic acid metabolism, Microbiol. Mol. Biol. R., 68, 132-153.

    Article  CAS  Google Scholar 

  4. Wishart, D. S., Knox, C., Guo, A., Eisner, R., Young, N., et al. (2009) HMDB: a knowledgebase for the human metabolome, Nucleic Acids Res., 37, D603-D610.

    Article  CAS  Google Scholar 

  5. Holzer, H., and Holldorf, A. (1957) Isolation of D-glycerate dehydrogenase, some properties of the enzyme and its application to the enzymic – optic determination of hydroxypyruvate in presence of pyruvate, Biochem. Z., 329, 292-312.

    CAS  PubMed  Google Scholar 

  6. Dreyer, J. L. (1987) The role of iron in the activation of mannonic and altronic acid hydratases, two Fe-requiring hydrolyases, Eur. J. Biochem., 166, 623-630.

    Article  CAS  Google Scholar 

  7. Dahms, A. S., and Donald, A. (1982) D-xylo-aldonate dehydratase, Methods Enzymol., 90, E302-E305.

    Article  Google Scholar 

  8. Shimizu, T., Takaya, N., and Nakamura, A. (2012) An L-glucose catabolic pathway in Paracoccus species 43P, J. Biol. Chem., 287, 40448-40456.

    Article  CAS  Google Scholar 

  9. Wichelecki, D. J., Balthazor, B. M., Chau, A. C., Vetting, M. W., Fedorov, A. A., Fedorov, E. V., Luk, T., Patskovsky, T. Y., Stead, M. B., Hillerich, B. S., Seidel, R. D., Almo, S. C., and Gerlt, J. A. (2014) Discovery of function in the enolase superfamily: d-mannonate and d-gluconate dehydratases in the d-mannonate dehydratase subgroup, Biochemistry, 53, 2722-2731.

    Article  CAS  Google Scholar 

  10. Zhang, X., Carter, M. S., Vetting, M. W., Francisco, B. S., Zhao, S., Al-Obaidi, N. F., Solbiatia, J. O., Thiavilled, J. J., Crecy-Lagard, V., Jacobson, M. P., Almo, S. C., and Gerlt, J. A. (2016) Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars, Proc. Natl. Acad. Sci. USA, 113, E4161-E4169.

    Article  CAS  Google Scholar 

  11. Gerlt, J. A., Bouvier, J. T., Davidson, D. B., Imker, H. J., Sadkhin, B., Slater, D. R., and Whalen, K. L. (2015) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks, Biochim. Biophys. Acta, 1854, 1019-1037.

    Article  CAS  Google Scholar 

  12. Luo, S., and Huang, H. (2018) Discovering a new catabolic pathway of D-ribonate in Mycobacterium smegmatis, Biochem. Biophys. Res. Commun., 505, 1107-1111.

    Article  CAS  Google Scholar 

  13. Aghaie, A., Lechaplais, C., Sirven, P., Tricot, S., Besnard-Gonnet, M., Muselet, D., Berardinis, V., Kreimeyer, A., Gyapay, G., Salanoubat, M., and Perret, A. (2008) New insights into the alternative D-glucarate degradation pathway, J. Biol. Chem., 283, 15638-15646.

    Article  CAS  Google Scholar 

  14. Severi, E., Hood, D. W., and Thomas, G. H. (2007) Sialic acid utilization by bacterial pathogens, Microbiology, 153, 2817-2822.

    Article  CAS  Google Scholar 

  15. Adachi, O., Hours, R. A., Shinagawa, E., Akakabe, Y., Ykushi, T., and Matsushita, K. (2011) Enzymatic synthesis of 4-pentulosonate (4-keto-D-pentonate) from D-aldopentose and D-pentonate by two different pathways using membrane enzymes of acetic acid bacteria, Biosci. Biotechnol. Biochem., 75, 2418-2420.

    Article  CAS  Google Scholar 

  16. Arrigoni, O., and De Tulio, M. C. (2002) Ascorbic acid: much more than just an antioxidant, Biochim. Biophys. Acta, 1569, 1-9.

    Article  CAS  Google Scholar 

  17. Yew, W. S., Fedorov, A. A., Fedorov, E. V., Rakus, J. F., Pierce, R. W., Almo, S. C., and Gerlt, J. A. (2006) Evolution of enzymatic activities in the enolase superfamily: L-fuconate dehydratase from Xanthomonas campestris, Biochemistry, 45, 14582-14597.

    Article  CAS  Google Scholar 

  18. Tchigvintsev, A., Singer, A., Brown, G., Flick, R., Evdokimova, E., Tan, K., Gonzalez, C. F., Savchenko, A., and Yakunin, A. F. (2012) Biochemical and structural studies of uncharacterized protein PA0743 from Pseudomonas aeruginosa revealed NAD-dependent L-serine dehydrogenase, J. Biol. Chem., 287, 1874-1883.

    Article  CAS  Google Scholar 

  19. Srikalaivani, R., Singh, A., Vijayan, M., and Surolia, A. (2018) Structure, interactions and action of Mycobacterium tuberculosis 3-hydroxyisobutyric acid dehydrogenase, Biochem. J., 475, 2457-2471.

    Article  CAS  Google Scholar 

  20. Zheng, R., and Blanchard, J. S. (2000) Kinetic and mechanistic analysis of the E. coli panE-encoded ketopantoate reductase, Biochemistry, 39, 3708-3717.

    Article  CAS  Google Scholar 

  21. Webb, M. E., Smith, A. G., and Abell, C. (2004) Biosynthesis of pantothenate, Nat. Prod. Rep., 21, 695-721.

    Article  CAS  Google Scholar 

  22. Grostern, A., Sales, C. M., Zhuang, W. Q., Erbilgin, O., and Alvarez-Cohen, L. (2012) Glyoxylate metabolism is a key feature of the metabolic degradation of 1,4-dioxane by Pseudonocardia dioxanivorans strain CB1190, Appl. Environ. Microbiol., 78, 3298-3308.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (project No. 31970087) and the start-up grant from the South China Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. S. Zhang or H. Huang.

Ethics declarations

This article does not contain description of studies with human participants or animals performed by any of the authors. The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Liu, Y., Wu, X. et al. Substrate Diversity of L-Threonic Acid Dehydrogenase Homologs. Biochemistry Moscow 85, 463–471 (2020). https://doi.org/10.1134/S0006297920040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920040069

Keywords

Navigation