Skip to main content
Log in

Translesion DNA Synthesis and Carcinogenesis

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA template structure and efficiently incorporate nucleotides opposite DNA lesions. However, these polymerases display low accuracy of DNA synthesis and can introduce mutations in genomic DNA. Impaired functioning of these enzymes can lead to an increased risk of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. * By translesion DNA polymerase, we mean a DNA polymerase, the main cellular function of which is DNA synthesis on damaged DNA, and demonstrating high efficiency of nucleotide incorporation opposite damaged DNA bases in vitro and in vivo.

Abbreviations

BER:

base excision repair

MMR:

mismatch repair

NER:

nucleotide excision repair

PCNA:

proliferating cell nuclear antigen

SHM:

somatic hypermutation

TLS:

translesion DNA synthesi

REFERENCES

  1. Loeb, L. A., Loeb, K. R., and Anderson, J. P. (2003) Multiple mutations and cancer, Proc. Natl. Acad. Sci. USA, 100, 776-781, doi: 10.1073/pnas.0334858100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ignatov, A. V., Bondarenko, K. A., and Makarova, A. V. (2017) Non-bulky lesions in human DNA: the ways of formation, repair, and replication, Acta Naturae, 9, 9-26, doi: 10.32607/20758251-2017-9-3-12-26.

    Article  Google Scholar 

  3. Makarova, A. V., and Burgers, P. M. (2015) Eukaryotic DNA polymerase ζ, DNA Repair (Amst), 29, 47-55, doi: 10.1016/j.dnarep.2015.02.012.

    Article  CAS  Google Scholar 

  4. Rizzo, A. A., and Korzhnev, D. M. (2019) The Rev1-Pol ζ translesion synthesis mutasome: structure, interactions and inhibition, Enzymes, 45, 139-181, doi: 10.1016/bs.enz.2019.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sale, J. E., Lehmann, A. R., and Woodgate, R. (2012) Y-family DNA polymerases and their role in tolerance of cellular DNA damage, Nat. Rev. Mol. Cell Biol., 13, 141-152, doi: 10.1038/nrm3289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, W., and Woodgate, R. (2007) What a difference a decade makes: insights into translesion DNA synthesis, Proc. Natl. Acad. Sci. USA, 104, 15591-15598, doi: 10.1073/pnas.0704219104.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Burgers, P. M. J., and Kunkel, T. A. (2017) Eukaryotic DNA replication fork, Annu. Rev. Biochem., 86, 417-438, doi: 10.1146/annurev-biochem-061516-044709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kunkel, T. A. (2009) Evolving views of DNA replication (in)fidelity, Cold Spring Harb. Symp. Quant. Biol., 74, 91-101, doi: 10.1101/sqb.2009.74.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, K., Weinacht, C. P., and Zhuang, Z. (2013) Regulatory role of ubiquitin in eukaryotic DNA translesion synthesis, Biochemistry, 52, 3217-3228, doi: 10.1021/bi400194r.

    Article  CAS  PubMed  Google Scholar 

  10. Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F., and Kunkel, T. A. (2000) Low fidelity DNA synthesis by human DNA polymerase-eta, Nature, 404, 1011-1013, doi: 10.1038/35010014.

    Article  CAS  PubMed  Google Scholar 

  11. Ohashi E., Bebenek K., Matsuda T., Feaver W. J., Gerlach V. L., Friedberg E. C., Ohmori H., and Kunkel T. A. (2000) Fidelity and processivity of DNA synthesis by DNA polymerase kappa, the product of the human DINB1 gene, J. Biol. Chem., 275, 39678-39684, doi: 10.1074/jbc.M005309200.

    Article  CAS  PubMed  Google Scholar 

  12. Tissier, A., McDonald, J. P., Frank, E. G., and Woodgate, R. (2000) Poliota, a remarkably error-prone human DNA polymerase, Genes Dev., 14, 1642-1650.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Baranovskiy, A. G., Lada, A. G., Siebler, H. M., Zhang, Y., Pavlov, Y. I., and Tahirov, T. H. (2012) DNA polymerase δ and ζ switch by sharing accessory subunits of DNA polymerase δ, J. Biol. Chem., 287, 17281-17287, doi: 10.1074/jbc.M112.351122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, Y. S., Gregory, M. T., and Yang, W. (2014) Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass, Proc. Natl. Acad. Sci. USA, 111, 2954-2959, doi: 10.1073/pnas.1324001111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Makarova, A. V., Stodola, J. L., and Burgers, P. M. (2012) A four-subunit DNA polymerase ζ complex containing Pol δ accessory subunits is essential for PCNA-mediated mutagenesis, Nucleic Acids Res., 40, 11618-11626, doi: 10.1093/nar/gks948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rizzo, A. A., Vassel, F.-M., Chatterjee, N., D’Souza, S., Li, Y., Hao, B., Hemann, M. T., Walker, G. C., and Korzhnev, D. M. (2018) Rev7 dimerization is important for assembly and function of the Rev1/Polζ translesion synthesis complex, Proc. Natl. Acad. Sci. USA, 115, 8191-8200, doi: 10.1073/pnas.1801149115.

    Article  CAS  Google Scholar 

  17. Ogi, T., Limsirichaikul, S., Overmeer, R. M., Volker, M., Takenaka, K., Cloney, R., Nakazawa, Y., Niimi, A., Miki, Y., Jaspers, N. G., Mullenders, L. H., Yamashita, S., Fousteri, M. I., and Lehmann, A. R. (2010) Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells, Mol. Cell, 37, 714-727, doi: 10.1016/j.molcel.2010.02.009.

    Article  CAS  PubMed  Google Scholar 

  18. Bebenek, K., Tissier, A., Frank, E. G., McDonald, J. P., Prasad, R., Wilson, S. H., Woodgate, R., and Kunkel, T. A. (2001) 5′-Deoxyribose phosphate lyase activity of human DNA polymerase iota in vitro, Science, 291, 2156-2159, doi: 10.1126/science.1058386.

    Article  CAS  PubMed  Google Scholar 

  19. Prasad, R., Poltoratsky, V., Hou, E. W., and Wilson, S. H. (2016) Rev1 is a base excision repair enzyme with 5′-deoxyribose phosphate lyase activity, Nucleic Acids Res., 44, 10824-10833, doi: 10.1093/nar/gkw869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jansen, J. G., Langerak, P., Tsaalbi-Shtylik, A., van den Berk, P., Jacobs, H., and de Wind, N. (2006) Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in REV1-deficient mice, J. Exp. Med., 203, 319-323, doi: 10.1084/jem.20052227.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zeng, X., Winter, D. B., Kasmer, C., Kraemer, K. H., Lehmann, A. R., and Gearhart, P. J. (2001) DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes, Nat. Immunol., 2, 537-541, doi: 10.1038/88740.

    Article  CAS  PubMed  Google Scholar 

  22. Rogozin, I. B., Pavlov, Y. I., Bebenek, K., Matsuda, T., and Kunkel, T. A. (2001) Somatic mutation hotspots correlate with DNA polymerase eta error spectrum, Nat. Immunol., 2, 530-536.

    Article  CAS  PubMed  Google Scholar 

  23. Masutani, C., Kusumoto, R., Yamada, A., Dohmae, N., Yokoi, M., Yuasa, M., Araki, M., Iwai, S., Takio, K., and Hanaoka, F. (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta, Nature, 399, 700-704, doi: 10.1038/21447.

    Article  CAS  PubMed  Google Scholar 

  24. Wittschieben, J. P., Patil, V., Glushets, V., Robinson, L. J., Kusewitt, D. F., and Wood, R. D. (2010) Loss of DNA polymerase zeta enhances spontaneous tumorigenesis, Cancer Res., 70, 2770-2778, doi: 10.1158/0008-5472.CAN-09-4267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lange, S. S., Bedford, E., Reh, S., Wittschieben, J. P., Carbajal, S., Kusewitt, D. F., DiGiovanni J., and Wood, R. D. (2013) Dual role for mammalian DNA polymerase ζ in maintaining genome stability and proliferative responses, Proc. Natl. Acad. Sci. USA, 110, 687-696, doi: 10.1073/pnas.1217425110.

    Article  Google Scholar 

  26. Alexandrov, L. B., Nik-Zainai, S., Wedge, D. C., Campbell, P. J., and Stratton, M. R. (2013) Signatures of mutational processes in human cancer, Nature, 500, 415-421, doi: 10.1038/nature12477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, Y., Biertümpfel, C., Gregory, M. T., Hua, Y. J., Hanaoka, F., and Yang, W. (2012) Structural basis of human DNA polymerase η-mediated chemoresistance to cisplatin, Proc. Natl. Acad. Sci. USA, 109, 7269-7274, doi: 10.1073/pnas.1202681109.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lin, Q., Clark, A. B., McCulloch, S. D., Yuan, T., Bronson, R. T., Kunkel, T. A., and Kucherlapati, R. (2006) Increased susceptibility to UV-induced skin carcinogenesis in polymerase eta-deficient mice, Cancer Res., 66, 87-94, doi: 10.1158/0008-5472.CAN-05-1862.

    Article  CAS  PubMed  Google Scholar 

  29. Supek, F., and Lehner, B. (2017) Clustered mutation signatures reveal that error-prone DNA repair targets mutations to active genes, Cell, 170, 534-547, doi: 10.1016/j.cell.2017.07.003.

    Article  CAS  PubMed  Google Scholar 

  30. Makarova, A. A., and Kulbachinskiy, A. V. (2012) Structure of human DNA polymerase iota and the mechanism of DNA synthesis, Biochemistry (Moscow), 77, 547-561, doi: 10.1134/S0006297912060016.

    Article  CAS  Google Scholar 

  31. McIntyre, J. (2019) Polymerase iota – an odd sibling among Y family polymerases, DNA Repair (Amst), 86, 102753, doi: 10.1016/j.dnarep.2019.102753.

    Article  CAS  Google Scholar 

  32. Johnson, R.E., Prakash, L., and Prakash, S. (2005) Biochemical evidence for the requirement of Hoogsteen base pairing for replication by human DNA polymerase iota, Proc. Natl. Acad. Sci. USA, 102, 10466-10471, doi: 10.1073/pnas.0503859102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Makarova, A. V., Ignatov, A., Miropolskaya, N., and Kulbachinskiy, A. (2014) Roles of the active site residues and metal cofactors in noncanonical base-pairing during catalysis by human DNA polymerase iota, DNA Repair (Amst), 22, 67-76, doi: 10.1016/j.dnarep.2014.07.006.

    Article  CAS  Google Scholar 

  34. Makarova, A. V., Grabow, C., Gening, L. V., Tarantul, V. Z., Tahirov, T. H., Bessho, T., and Pavlov, Y. I. (2011) Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota, PLoS One, 6, 16612, doi: 10.1371/journal.pone.0016612.

    Article  CAS  Google Scholar 

  35. Vaisman, A., and Woodgate, R. (2001) Unique misinsertion specificity of poliota may decrease the mutagenic potential of deaminated cytosines, EMBO J., 20, 6520-6529, doi: 10.1093/emboj/20.22.6520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kirouac, K. N., and Ling, H. (2009) Structural basis of error-prone replication and stalling at a thymine base by human DNA polymerase iota, EMBO J., 28, 1644-1654, doi: 10.1038/emboj.2009.122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iguchi, M., Osanai, M., Hayashi, Y., Koentgen, F., and Lee, G.H. (2014) The error-prone DNA polymerase ι provides quantitative resistance to lung tumorigenesis and mutagenesis in mice, Oncogene, 33, 3612-3617, doi: 10.1038/onc.2013.331.

    Article  CAS  PubMed  Google Scholar 

  38. Lee, G. H., and Matsushita, H. (2005) Genetic linkage between Pol iota deficiency and increased susceptibility to lung tumors in mice, Cancer Sci., 96, 256-259, doi: 10.1111/j.1349-7006.2005.00042.x.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, M., Devereux, T. R., Vikis, H. G., McCulloch, S. D., Holliday, W., Anna, C., Wang, Y., Bebenek, K., Kunkel, T. A., Guan, K., and You, M. (2004) Pol iota is a candidate for the mouse pulmonary adenoma resistance 2 locus, a major modifier of chemically induced lung neoplasia, Cancer Res., 64, 1924-1931, doi: 10.1158/0008-5472.can-03-3080.

    Article  CAS  PubMed  Google Scholar 

  40. Dumstorf, C. A., Clark, A. B., Lin, Q., Kissling, G. E., Yuan, T., Kucherlapati, R., McGregor, W. G., and Kunkel, T. A. (2006) Participation of mouse DNA polymerase iota in strand-biased mutagenic bypass of UV photoproducts and suppression of skin cancer, Proc. Natl. Acad. Sci. USA, 103, 18083-18088, doi: 10.1073/pnas.0605247103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ohkumo, T., Kondo, Y., Yokoi, M., Tsukamoto, T., Yamada, A., Sugimoto, T., Kanao, R., Higashi, Y., Kondoh, H., Tatematsu, M., Masutani, C., and Hanaoka, F. (2006) UV-B radiation induces epithelial tumors in mice lacking DNA polymerase eta and mesenchymal tumors in mice deficient for DNA polymerase iota, Mol. Cell. Biol., 26, 7696-7706, doi: 10.1128/MCB.01076-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tomlins, S. A., Rhodes, D. R., Perner, S., Dhanasekaran, S.M., and Mehra, R., et al. (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer, Science, 310, 644-648, doi: 10.1126/science.1117679.

    Article  CAS  PubMed  Google Scholar 

  43. Bienko, M., Green, C. M., Crosetto, N., Rudolf, F., Zapart, G., Coull, B., Kannouche, P., Wider, G., Peter, M., Lehmann, A. R., Hofmann, K., and Dikic, I. (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis, Science, 310, 1821-1824, doi: 10.1126/science.1120615.

    Article  CAS  PubMed  Google Scholar 

  44. Bomar, M. G., D’Souza, S., Bienko, M., Dikic, I., Walker, G. C., and Zhou, P. (2010) Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and REV1, Mol. Cell, 37, 408-417, doi: 10.1016/j.molcel.2009.12.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, H., Wu, W., Wang, H.W., Wang, S., Chen, Y., Zhang, X., Yang, J., Zhao, S., Ding, H. F., and Lu, D. (2010) Analysis of specialized DNA polymerases expression in human gliomas: association with prognostic significance, Neuro Oncol., 12, 679-686, doi: 10.1093/neuonc/nop074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun, H., Zou, S., Zhang, S., Liu, B., Meng, X., Li, X., Yu, J., Wu, J., and Zhou, J. (2015) Elevated DNA polymerase iota (Polι) is involved in the acquisition of aggressive phenotypes of human esophageal squamous cell cancer, Int. J. Clin. Exp. Pathol., 8, 3591-3601.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou, J., Zhang, S., Xie, L., Liu, P., Xie, F., Wu, J., Cao, J., and Ding, W. Q. (2012) Overexpression of DNA polymerase iota (Polι) in esophageal squamous cell carcinoma, Cancer Sci., 103, 1574-1579, doi: 10.1111/j.1349-7006.2012.02309.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zou, S., Shang, Z. F., Liu, B., Zhang, S., Wu, J., Huang, M., Ding, W.Q., and Zhou, J. (2016) DNA polymerase iota (Pol ι) promotes invasion and metastasis of esophageal squamous cell carcinoma, Oncotarget, 7, 32274-32285, doi: 10.18632/oncotarget.8580.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang, J., Chen, Z., Liu, Y., Hickey, R. J., and Malkas, L. H. (2004) Altered DNA polymerase iota expression in breast cancer cells leads to a reduction in DNA replication fidelity and a higher rate of mutagenesis, Cancer Res., 64, 5597-5507, doi: 10.1158/0008-5472.CAN-04-0603.

    Article  CAS  PubMed  Google Scholar 

  50. Yuan, F., Xu, Z., Yang, M., Wei, Q., Zhang, Y., Yu, J., Zhi, Y., Liu, Y., Chen, Z., and Yang, J. (2013) Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer, PLoS One, 8, 69317, doi: 10.1371/journal.pone.0069317.

    Article  CAS  Google Scholar 

  51. He, C., Wu, S., Gao, A., Su, Y., Min, H., Shang, Z. F., Wu, J., Yang, L., Ding, W. Q., and Zhou, J. (2017) Phosphorylation of ETS-1 is a critical event in DNA polymerase iota-induced invasion and metastasis of esophageal squamous cell carcinoma, Cancer Sci., 108, 2503-2510, doi: 10.1111/cas.13399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, L., Tian, H., Cheng, C., Li, S., Ming, L., and Qi, L. (2018) siRNA of DNA polymerase iota inhibits the migration and invasion in the lung cancer cell A549, Acta Biochim. Biophys. Sin. (Shanghai), 50, 929-933, doi: 10.1093/abbs/gmy089.

    Article  CAS  Google Scholar 

  53. Zou, S., Xu, Y., Chen, X., He, C., Gao, A., Zhou, J., and Chen, Y. (2019) DNA polymerase iota (Pol ι) promotes the migration and invasion of breast cancer cell via EGFR-ERK-mediated epithelial to mesenchymal transition, Cancer Biomarkers, 24, 363-370, doi: 10.3233/CBM-181516.

    Article  CAS  PubMed  Google Scholar 

  54. Ito, A., Koshikawa, N., Mochizuki, S., Omura, K., and Takenaga, K. (2006) Hypoxia-inducible factor-1 mediates the expression of DNA polymerase iota in human tumor cells, Biochem. Biophys. Res. Commun., 351, 306-311, doi: 10.1016/j.bbrc.2006.10.048.

    Article  CAS  PubMed  Google Scholar 

  55. Stern, H. R., Sefcikova, J., Chaparro, V. E., and Beuning, P. J. (2019) Mammalian DNA polymerase kappa activity and specificity, Molecules, 24, 2805, doi: 10.3390/molecules24152805.

    Article  PubMed Central  Google Scholar 

  56. Choi, J. Y., Angel, K. C., and Guengerich, F. P. (2006) Translesion synthesis across bulky N2-alkyl guanine DNA adducts by human DNA polymerase kappa, J. Biol. Chem., 281, 21062-21072, doi: 10.1074/jbc.M602246200.

    Article  CAS  PubMed  Google Scholar 

  57. Jha, V., Bian, C., Xing, G., and Ling, H. (2016) Structure and mechanism of error-free replication past the major benzo[a]pyrene adduct by human DNA polymerase κ, Nucleic Acids Res., 44, 4957-4967, doi: 10.1093/nar/gkw204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yasui, M., Dong, H., Bonala, R. R., Suzuki, N., Ohmori, H., Hanaoka, F., Johnson, F., Grollman, A. P., and Shibutani, S. (2004) Mutagenic properties of 3-(deoxyguanosin-N2-yl)-2-acetylaminofluorene, a persistent acetylaminofluorene-derived DNA adduct in mammalian cells, Biochemistry, 43, 15005-15013, doi: 10.1021/bi048279+.

    Article  CAS  PubMed  Google Scholar 

  59. Yuan, B., Cao, H., Jiang, Y., Hong, H., and Wang, Y. (2008) Efficient and accurate bypass of N2-(1-carboxyethyl)-2′-deoxyguanosine by DinB DNA polymerase in vitro and in vivo, Proc. Natl. Acad. Sci. USA, 105, 8679-8684, doi: 10.1073/pnas.0711546105.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lee, B. M., and Shim, G. A. (2007) Dietary exposure estimation of benzo[a]pyrene and cancer risk assessment, J. Toxicol. Env. Heal. A, 70, 1391-1394, doi: 10.1080/15287390701434182.

    Article  CAS  Google Scholar 

  61. Hecht, S. S. (1999) Tobacco smoke carcinogens and lung cancer, J. Natl. Cancer Inst., 91, 1194-1210, doi: 10.1093/jnci/91.14.1194.

    Article  CAS  PubMed  Google Scholar 

  62. Avkin, S., Goldsmith, M., Velasco-Miguel, S., Geacintov, N., Friedberg, E. C., and Livneh, Z. (2004) Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: the role of DNA polymerase kappa, J. Biol. Chem., 279, 53298-53305, doi: 10.1074/jbc.M409155200.

    Article  CAS  PubMed  Google Scholar 

  63. Ogi, T., Shinkai, Y., Tanaka, K., and Ohmori, H. (2002) Polkappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene, Proc. Natl. Acad. Sci. USA, 99, 15548-15553, doi: 10.1073/pnas.222377899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kanemaru, Y., Suzuki, T., Niimi, N., Gruz, P., Matsumoto, K., Adachi, N., Honma, M., and Nohmi, T. (2015) Catalytic and non-catalytic roles of DNA polymerase κ in the protection of human cells against genotoxic stresses, Environ. Mol. Mutagen., 56, 650-662, doi: 10.1002/em.21961.

    Article  CAS  PubMed  Google Scholar 

  65. Hakura, A., Sui, H., Sonoda, J., Matsuda, T., and Nohmi, T. (2019) DNA polymerase kappa counteracts inflammation-induced mutagenesis in multiple organs of mice, Environ. Mol. Mutagen., 60, 320-330, doi: 10.1002/em.22272.

    Article  CAS  PubMed  Google Scholar 

  66. Ho, T. V., Guainazzi, A., Derkunt, S. B., Enoiu, M., and Scharer, O. D. (2011) Structure-dependent bypass of DNA interstrand crosslinks by translesion synthesis polymerases, Nucleic Acids Res., 39, 7455-7464, doi: 10.1093/nar/gkr448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jha, V., and Ling, H. (2018) Structural basis for human DNA polymerase kappa to bypass cisplatin intrastrand cross-link (Pt-GG) lesion as an efficient and accurate extender, J. Mol. Biol., 430, 1577-1589, doi: 10.1016/j.jmb.2018.04.023.

    Article  CAS  PubMed  Google Scholar 

  68. Kanemaru, Y., Suzuki, T., Sassa, A., Matsumoto, K., Adachi, N., Honma, M., Numazawa, S., and Nohmi, T. (2017) DNA polymerase kappa protects human cells against MMC-induced genotoxicity through error-free translesion DNA synthesis, Genes Environ., 39, 6, doi: 10.1186/s41021-016-0067-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Williams, H. L., Gottesman, M. E., and Gautier, J. (2012) Replication-independent repair of DNA interstrand crosslinks, Mol. Cell, 47, 140-147, doi: 10.1016/j.molcel.2012.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhuo, M., Gorgun, M. F., and Englander, E. W. (2017) Translesion synthesis DNA polymerase kappa is indispensable for DNA repair synthesis in cisplatin exposed dorsal root ganglion neurons, Mol. Neurobiol., 55, 2506-2515, doi: 10.1007/s12035-017-0507-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lemée, F., Bavoux, C., Pillaire, M. J., Bieth, A., Machado, C. R., Pena, S. D., Guimbaud, R., Selves, J., Hoffmann, J. S., and Cazaux, C. (2007) Characterization of promoter regulatory elements involved in downexpression of the DNA polymerase kappa in colorectal cancer, Oncogene, 26, 3387-3394.

    Article  PubMed  Google Scholar 

  72. Pan, Q., Fang, Y., Xu, Y., Zhang, K., and Hu, X. (2005) Down-regulation of DNA polymerases kappa, eta, iota, and zeta in human lung, stomach, and colorectal cancers, Cancer Lett., 217, 139-147, doi: 10.1016/j.canlet.2004.07.021.

    Article  CAS  PubMed  Google Scholar 

  73. Ogi, T., Kato, T. Jr., Kato, T., and Ohmori, H. (1999) Mutation enhancement by DINB1, a mammalian homologue of the Escherichia coli mutagenesis protein din B, Genes Cells, 4, 607-618, doi: 10.1046/j.1365-2443.1999.00289.x.

    Article  CAS  PubMed  Google Scholar 

  74. Bergoglio, V., Bavoux, C., Verbiest, V., Hoffmann, J. S., and Cazaux, C. (2002) Localisation of human DNA polymerase kappa to replication foci, J. Cell Sci., 115, 4413-4418, doi: 10.1242/jcs.00162.

    Article  CAS  PubMed  Google Scholar 

  75. Bavoux, C., Leopoldino, A. M., Bergoglio, V., O-Wang, J., Ogi, T., Bieth, A., Judde, J. G., Pena, S. D., Poupon, M. F., Helleday, T., Tagawa, M., Machado, C., Hoffmann, J. S., and Cazaux, C. (2005) Up-regulation of the error-prone DNA polymerase {kappa} promotes pleiotropic genetic alterations and tumorigenesis, Cancer Res., 65, 325-330.

    CAS  PubMed  Google Scholar 

  76. O-Wang, J., Kawamura, K., Tada, Y., Ohmori, H., Kimura, H., Sakiyama, S., and Tagawa, M. (2001) DNA polymerase kappa, implicated in spontaneous and DNA damage-induced mutagenesis, is overexpressed in lung cancer, Cancer Res., 61, 5366-5369.

    CAS  PubMed  Google Scholar 

  77. Wang, Y., Seimiya, M., Kawamura, K., Yu, L., Ogi, T., Takenaga, K., Shishikura, T., Nakagawara, A., Sakiyama, S., Tagawa, M., and O-Wang, J. (2004) Elevated expression of DNA polymerase kappa in human lung cancer is associated with p53 inactivation: negative regulation of POLK promoter activity by p53, Int. J. Oncol., 25, 161-165.

    PubMed  Google Scholar 

  78. Lin, Y. C., Li, L., Makarova, A. V., Burgers, P. M., Stone, M. P., and Lloyd, R. S. (2014) Molecular basis of aflatoxin-induced mutagenesis-role of the aflatoxin B1-formamidopyrimidine adduct, Carcinogenesis, 35, 1461-1468, doi: 10.1093/carcin/bgu003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin, Y. C., Owen, N., Minko, I. G., Lange, S. S., Tomida, J., Li, L., Stone, M. P., Wood, R. D., McCullough, A. K., and Lloyd, R. S. (2016) DNA polymerase ζ limits chromosomal damage and promotes cell survival following aflatoxin exposure, Proc. Natl. Acad. Sci. USA, 113, 13774-13779, doi: 10.1073/pnas.1609024113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hashimoto, K., Bonala, R., Johnson, F., Grollman, A. P., and Moriya, M. (2016) Y-family DNA polymerase-independent gap-filling translesion synthesis across aristolochic acid-derived adenine adducts in mouse cells, DNA Repair (Amst), 46, 55-60, doi: 10.1016/j.dnarep.2016.07.003.

    Article  CAS  Google Scholar 

  81. Stegelmeier, B. L., Brown, A. W., and Welch, K. D. (2015) Safety concerns of herbal products and traditional Chinese herbal medicines: dehydropyrrolizidine alkaloids and aristolochic acid, J. Appl. Toxicol., 35, 1433-1437, doi: 10.1002/jat.3192.

    Article  CAS  PubMed  Google Scholar 

  82. Wu, H. C., and Santella, R. (2012) The role of aflatoxins in hepatocellular carcinoma, Hepat. Mon., 12, 7238, doi: 10.5812/hepatmon.7238.

    Article  Google Scholar 

  83. Chen, C. H., Dickman, K. G., Moriya, M., Zavadil, J., Sidorenko, V. S., Edwards, K. L., Gnatenko, D. V., Wu, L., Turesky, R. J., Wu, X. R., Pu, Y. S., and Grollman, A. P. (2012) Aristolochic acid-associated urothelial cancer in Taiwan, Proc. Natl. Acad. Sci. USA, 109, 8241-8246, doi: 10.1073/pnas.1119920109.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kochenova, O. V., Bezalel-Buch, R., Tran, P., Makarova, A. V., Chabes, A., Burgers, P. M., and Shcherbakova, P. V. (2017) Yeast DNA polymerase ζ maintains consistent activity and mutagenicity across a wide range of physiological dNTP concentrations, Nucleic Acids Res., 45, 1200-1218, doi: 10.1093/nar/gkw1149.

    Article  CAS  PubMed  Google Scholar 

  85. Esposito, G., Godindagger, I., Klein, U., Yaspo, M.L., Cumano, A., and Rajewsky, K. (2000) Disruption of the Rev3l-encoded catalytic subunit of polymerase zeta in mice results in early embryonic lethality, Curr. Biol., 10, 1221-1224, doi: 10.1016/s0960-9822(00)00726-0.

    Article  CAS  PubMed  Google Scholar 

  86. Wittschieben, J., Shivji, M. K., Lalani, E., Jacobs, M. A., Marini, F., Gearhart, P. J., Rosewell, I., Stamp, G., and Wood, R. D. (2000) Disruption of the developmentally regulated Rev3l gene causes embryonic lethality, Curr. Biol., 10, 1217-1220, doi: 10.1016/s0960-9822(00)00725-9.

    Article  CAS  PubMed  Google Scholar 

  87. Van Sloun, P. P., Varlet, I., Sonneveld, E., Boei, J. J., Romeijn, R. J., Eeken, J. C., and De Wind, N. (2002) Involvement of mouse Rev3 in tolerance of endogenous and exogenous DNA damage, Mol. Cell Biol., 22, 2159-2169, doi: 10.1128/mcb.22.7.2159-2169.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zander, L., and Bemark, M. (2004) Immortalized mouse cell lines that lack a functional Rev3 gene are hypersensitive to UV irradiation and cisplatin treatment, DNA Repair (Amst), 3, 743-752, doi: 10.1016/j.dnarep.2004.03.031.

    Article  CAS  Google Scholar 

  89. Wittschieben, J. P., Reshmi, S. C., Gollin, S. M., and Wood, R. D. (2006) Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells, Cancer Res., 66, 134-142, doi: 10.1158/0008-5472.CAN-05-2982.

    Article  CAS  PubMed  Google Scholar 

  90. Harfe, B. D., and Robertson, S. (2000) DNA polymerase zeta introduces multiple mutations when bypassing spontaneous DNA damage in Saccharomyces cerevisiae, Mol. Cell, 6, 1491-1499, doi: 10.1016/s1097-2765(00)00145-3.

    Article  CAS  PubMed  Google Scholar 

  91. Brondello, J. M., Pillaire, M. J., Rodriguez, C., Gourraud, P. A., Selves, J., Cazaux, C., and Piette, J. (2008) Novel evidences for a tumor suppressor role of Rev3, the catalytic subunit of Pol zeta, Oncogene, 27, 6093-6101, doi: 10.1038/onc.2008.212.

    Article  CAS  PubMed  Google Scholar 

  92. Guo, C., Fischhaber, P. L., Luk-Paszyc, M. J., Masuda, Y., Zhou, J., Kamiya, K., Kisker, C., and Friedberg, E. C. (2003) Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis, EMBO J., 22, 6621-6630, doi: 10.1093/emboj/cdg626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ohashi, E., Hanafusa, T., Kamei, K., Song, I., Tomida, J., Hashimoto, H., Vaziri, C., and Ohmori, H. (2009) Identification of a novel REV1-interacting motif necessary for DNA polymerase kappa function, Genes Cells, 14, 101-111, doi: 10.1111/j.1365-2443.2008.01255.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pustovalova, Y., Bezsonova, I., and Korzhnev, D. M. (2012) The C-terminal domain of human Rev1 contains independent binding sites for DNA polymerase η and Rev7 subunit of polymerase ζ, FEBS Lett., 586, 3051-3056, doi: 10.1016/j.febslet.2012.07.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pustovalova, Y., Magalhães, M. T., D’Souza, S., Rizzo, A. A., Korza, G., Walker, G. C., and Korzhnev, D. M. (2016) Interaction between the Rev1 C-terminal domain and the PolD3 subunit of Polζ suggests a mechanism of polymerase exchange upon Rev1/Polζ-dependent translesion synthesis, Biochemistry, 55, 2043-2053, doi: 10.1021/acs.biochem.5b01282.

    Article  CAS  PubMed  Google Scholar 

  96. Guo, C., Sonoda, E., Tang, T. S., Parker, J. L., Bielen, A. B., Takeda, S., Ulrich, H. D., and Friedberg, E. C. (2006) REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo, Mol. Cell, 23, 265-271, doi: 10.1016/j.molcel.2006.05.038.

    Article  CAS  PubMed  Google Scholar 

  97. Pustovalova, Y., Maciejewski, M. W., and Korzhnev, D. M. (2013) NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain, J. Mol. Biol., 425, 3091-3105, doi: 10.1016/j.jmb.2013.05.029.

    Article  CAS  PubMed  Google Scholar 

  98. Masuda, Y., and Kamiya, K. (2002) Biochemical properties of the human REV1 protein, FEBS Lett., 520, 88-92, doi: 10.1016/s0014-5793(02)02773-4.

    Article  CAS  PubMed  Google Scholar 

  99. Choi, J. Y., Lim, S., Kim, E. J., Jo, A., and Guengerich, F. P. (2010) Translesion synthesis across abasic lesions by human B-family and Y-family DNA polymerases α, δ, η, ι, κ, and REV1, J. Mol. Biol., 404, 34-44, doi: 10.1016/j.jmb.2010.09.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Choi, J. Y., and Guengerich, F. P. (2008) Kinetic analysis of translesion synthesis opposite bulky N2- and O6-alkylguanine DNA adducts by human DNA polymerase REV1, J. Biol. Chem., 283, 23645-23655, doi: 10.1074/jbc.M801686200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sasatani, M., Xi, Y., Kajimura, J., Kawamura, T., Piao, J., Masuda, Y., Honda, H., Kubo, K., Mikamoto, T., Watanabe, H., Xu, Y., Kawai, H., Shimura, T., Noda, A., Hamasaki, K., Kusunoki, Y., Zaharieva, E.K., and Kamiya, K. (2017) Overexpression of Rev1 promotes the development of carcinogen-induced intestinal adenomas via accumulation of point mutation and suppression of apoptosis proportionally to the Rev1 expression level, Carcinogenesis, 38, 570-578, doi: 10.1093/carcin/bgw208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Clark, D. R., Zacharias, W., Panaitescu, L., and McGregor, W. G. (2003) Ribozyme-mediated REV1 inhibition reduces the frequency of UV-induced mutations in the human HPRT gene, Nucleic Acids Res., 31, 4981-4988, doi: 10.1093/nar/gkg725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mukhopadhyay, S., Clark, D. R., Watson, N. B., Zacharias, W., and McGregor, W. G. (2004) REV1 accumulates in DNA damage-induced nuclear foci in human cells and is implicated in mutagenesis by benzo[a]pyrenediolepoxide, Nucleic Acids Res., 32, 5820-5826, doi: 10.1093/nar/gkh903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dumstorf, C. A., Mukhopadhyay, S., Krishnan, E., Haribabu, B., and McGregor, W. G. (2009) REV1 is implicated in the development of carcinogen-induced lung cancer, Mol. Cancer Res., 7, 247-254, doi: 10.1158/1541-7786.MCR-08-0399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tsaalbi-Shtylik, A., Verspuy, J. W., Jansen, J. G., Rebel, H., Carlée, L. M., van der Valk, M. A., Jonkers, J., de Gruijl, F. R., and de Wind, N. (2009) Error-prone translesion replication of damaged DNA suppresses skin carcinogenesis by controlling inflammatory hyperplasia, Proc. Natl. Acad. Sci. USA, 106, 21836-21841, doi: 10.1073/pnas.0909507106.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Pilzecker, B., and Jacobs, H. (2019) Mutating for good: DNA damage responses during somatic hypermutation, Front. Immunol., 10, 438, doi: 10.3389/fimmu.2019.00438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wilson, T. M., Vaisman, A., Martomo, S. A., Sullivan, P., Lan, L., Hanaoka, F., Yasui, A., Woodgate, R., and Gearhart, P. J. (2005) MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes, J. Ex. Med., 201, 637-645, doi: 10.1084/jem.20042066.

    Article  CAS  Google Scholar 

  108. Peña-Diaz, J., Bregenhorn, S., Ghodgaonkar, M., Follonier, C., ArtolaBorán, M., Castor, D., Lopes, M., Sartori, A. A., and Jiricny, J. (2012) Noncanonical mismatch repair as a source of genomic instability in human cells, Mol. Cell, 47, 669-680, doi: 10.1016/j.molcel.2012.07.006.

    Article  CAS  PubMed  Google Scholar 

  109. Delbos, F., Aoufouchi, S., Faili, A., Weill, J.-C., and Reynaud, C.-A. (2007) DNA Polymerase eta is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse, J. Exp. Med., 204, 17-23, doi: 10.1084/jem.20062131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Burns, M. B., Temiz, N. A., and Harris, R. S. (2013) Evidence for APOBEC3B mutagenesis in multiple human cancers, Nat. Genet., 45, 977-973, doi: 10.1038/ng.2701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Koito, A., and Ikeda, T. (2013) Intrinsic immunity against retrotransposons by APOBEC cytidine deaminases, Front. Microbiol., 4, 28, doi: 10.3389/fmicb.2013.00028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rogozin, I. B., Roche-Lima, A., Lada, A. G., Belinky, F., Sidorenko, I. A., Glazko, G. V., Babenko, V. N., Cooper, D. N., and Pavlov, Y. I. (2019) Nucleotide weight matrices reveal ubiquitous mutational footprints of AID/APOBEC deaminases in human cancer genomes, Cancers (Basel), 11, 211, doi: 10.3390/cancers11020211.

    Article  CAS  PubMed Central  Google Scholar 

  113. García-Gómez, S., Reyes, A., Martínez-Jiménez, M. I., Chocrón, E. S., Mourón, S., Terrados, G., Powell, C., Salido, E., Méndez, J., Holt, I. J., and Blanco, L. (2013) PrimPol, an archaic primase/polymerase operating in human cells, Mol. Cell, 52, 541-553, doi: 10.1016/j.molcel.2013.09.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bianchi, J., Rudd, S. G., Jozwiakowski, S. K., Bailey, L. J., Soura, V., Taylor, E., Stevanovic, I., Green, A. J., Stracker, T. H., Lindsay, H. D., and Doherty, A. J. (2013) PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication, Mol. Cell, 52, 566-573, doi: 10.1016/j.molcel.2013.10.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mourón, S., Rodriguez-Acebes, S., Martínez-Jiménez, M. I., García-Gómez, S., Chocrón, S., Blanco, L., and Méndez, J. (2013) Repriming of DNA synthesis at stalled replication forks by human PrimPol, Nat. Struct. Mol. Biol., 20, 1383-1389, doi: 10.1038/nsmb.2719.

    Article  CAS  PubMed  Google Scholar 

  116. Pilzecker, B., Buoninfante, O. A., Pritchard, C., Blomberg, O. S., Huijbers, I. J., van den Berk, P. C., and Jacobs, H. (2016) PrimPol prevents APOBEC/AID family mediated DNA mutagenesis, Nucleic Acids Res., 44, 4734-4744, doi: 10.1093/nar/gkw123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kobayashi, K., Guilliam, T. A., Tsuda, M., Yamamoto, J., Bailey, L. J., Iwai, S., Takeda, S., Doherty, A. J., and Hirota, K. (2016) Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides, Cell Cycle, 15, 1997-2008, doi: 10.1080/15384101.2016.1191711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Makarova, A. V., Boldinova, E. O., and Belousova, E. A., and Lavrik, O. I. (2018) In vitro lesion bypass by human PrimPol, DNA Repair (Amst), 70, 18-24, doi: 10.1016/j.dnarep.2018.07.009.

    Article  CAS  Google Scholar 

  119. Piberger, A. L., Walker, A. K., Morris, J. R., Bryant, H. E., and Petermann, E. (2019) PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts, bioRxiv, doi: 10.1101/773242.

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (projects Nos. komfi 17-00-00264 and Bel-a 18-54-00024 for A.V.M.), by the Belarusian Republican Foundation for Fundamental Research (project No. B18R-094 for M.P.S.; Y-family DNA polymerases), and by the Russian Science Foundation (project No. 18-14-00354 for A.V.M.; PrimPol).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. P. Smal or A. V. Makarova.

Ethics declarations

The paper does not contain studies involving human volunteers and experiments performed in animals. The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilkin, E., Boldinova, E., Stolyarenko, A. et al. Translesion DNA Synthesis and Carcinogenesis. Biochemistry Moscow 85, 425–435 (2020). https://doi.org/10.1134/S0006297920040033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920040033

Keywords

Navigation