Skip to main content

Advertisement

Log in

Observability Inequalities for Hermite Bi-cubic Orthogonal Spline Collocation Methods of 2-D Integro-differential Equations in the Square Domains

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We will consider the problem of observability inequality of the Hermite bi-cubic orthogonal spline collocation space semi-discretizations of the 2-D integro-differential equations in the square domains. We prove the uniform (with respect to mesh-size) observability inequality in a subspace of solutions generated by the low frequencies of the negative part, and the middle frequencies of the positive part. Our method uses previously known uniform observability inequalities in the 1-d case and a dyadic spectral time decomposition. Some numerical results are presented to illustrate our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pr\(\ddot{u}\)ss, J.: Evolutionary Integral Equations and Applications, Monographs Mathematics, vol. 87. Birkh\( \ddot{a} \)user Verlag, Basel (1993)

  2. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problem in Viscoelasticity. Longman, London (1987)

    MATH  Google Scholar 

  3. Loreti, P., Sforza, D.: Inverse observability inequalities for integrodifferential equations in square domains. Evol. Equ. Control Theory 7(1), 61–77 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Da, X.: Boundary observability of semi-discrete second-order integro-differential equations derived from piecewise Hermite cubic orthogonal spline collocation method. Appl. Math. Optim. 77, 73–97 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bialecki, B., Fairweather, G., Bennett, K.R.: Fast direct solvers for piecewise Hermite bicubic orthogonal spline collocation equations. SIAM J. Numer. Anal. 29, 156–173 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zuazua, E.: Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures Appl. 78, 523–563 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Glowinski, R.: Ensuring well-posedness by analogy; stokes problem and boundary control for the wave equation. J. Comput. Phys. 103, 189–221 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Glowinski, R., Li, C.H., Lions, J.L.: A numerical approach to the exact boundary controllability of the wave equation, (I). Dirichlet controls: description of the numerical methods. Jpn. J. Appl. Math. 103, 1–76 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glowinski, R., Lions, J.L.: Exact and approximate controllability for distribute parameter system. Acta Numer. 269, 159–333 (1996)

    MATH  Google Scholar 

  10. Aurora, M., Enrique, Z.: Propagation of 1D waves in regular discrete heterogeneous media:a Wigner measure approach. Found. Comput. Math. 15, 1571–1636 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Umberto, B., Aurora, M., Enrique, Z.: Propagation of one and two-dimensional discrete waves under finite difference approximation, arXiv:1806.09313v1 [math.AP] (2018)

  12. Micu, S.: Uniform boundary controllability of a semi-discrete 1-D wave equation. Numer. Math. 91, 723–768 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47(2), 197–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Louis, T.T., Zuazua, E.: Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation. Adv. Comput. Math. 26, 337–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Micu, S.: Uniform boundary controllability of a semi-discrete 1-d wave equation with vanishing viscosity. SIAM J. Control Optim. 47(6), 2857–2885 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bugariu, I.F., Micu, S., Roventa, I.: Approximation of the controls for the beam equation with vanishing viscosity. Math. Comput. 85(301), 2259–2303 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Glowinski, R., Kinton, W., Wheeler, M.F.: A mixed finite element formulation for the boundary controllability of the wave equation. Int. J. Numer. Methods Eng. 27, 623–635 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Castro, C., Micu, S.: Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method. Numer. Math. 102, 413–462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Castro, C., Micu, S., M\( \ddot{u} \)nch, : Numerical approximation of the boundary control for the wave equation with mixed finite finite elements in a square. IMA J. Numer. Anal. 28, 186–214 (2008)

  20. Negreanu, M., Zuazua, E.: Convergence of a multigrid method for the controllability of a 1-D wave equation. C. R. Math. Acad. Sci. Paris 338, 413–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Loreti, P., Mehrenberger, M.: An Ingham type proof for a two-grid observability theorem. ESAIM Control Optim. Calc. Var. 14, 604–631 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ignat, L.I., Zuazua, E.: Convergence of a two-grid algorithm for the control of the wave equation. J. Eur. Math. Soc. 11, 351–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marica, A., Zuazua, E.: On the quadratic finite element approximation of one-dimensional waves: propagation, observation, and control. SIAM J. Numer. Anal. 50(5), 2744–2777 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marica, A., Zuazua, E.: Symmetric Discontinuous Galerkin Approximations of 1-D Waves. Fourier Analysis, Propagation, Observability and Applications. With a foreword by Roland Glowinski, Springer Briefs in Mathematics, Springer, New York (2014). xvi+104 pp. ISBN: 978-1-4614-5810-4; 978-1-4614-5811-1

  25. Marica, A., Zuazua, E.: On the Quadratic Finite Element Approximation of 1-D Waves: Propagation, Observation, Control, and Numerical Implementation, The Courant-Friedrichs-Lewy (CFL) Condition, pp. 75–99. Birkhuser/Springer, New York (2013)

    MATH  Google Scholar 

  26. Bialecki, B., Fairweather, G.: Orthogonal spline collocation methods for partial differential equations. J. Comput. Appl. Math. 128, 55–82 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yanik, E.G., Fairweather, G.: Finite element methods for parabolic and hyperbolic partial integro-differential equations. Nonlinear Anal. 12, 785–809 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yi, Y., Fairweather, G.: Orthogonal spline collocation methods for some partial integro-differential equations. SIAM J. Numer. Anal. 20, 755–768 (1992)

    MATH  Google Scholar 

  29. Fairweather, G.: Spline collocation methods for a class of hyperbolic partial integro-differential equations. SIAM J. Numer. Anal. 31(2), 444–460 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fairweather, G., Yang, X., Xu, D., Zhang, H.: An ADI Crank-Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation. J. Sci. Comput. 65, 1217–1239 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fairweather, G., Zhang, H., Yang, X., Xu, D.: A backward Euler orthogonal spline collocation method for the time-fractional Fokker-Planck equation. Numer. Methods Partial Differ. Equ. 31, 1534–1550 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, X., Zhang, H., Da, X.: WSGD-OSC scheme for two-dimensional distributed order fractional reaction-diffusion equation. J. Sci. Comput. 76(3), 1502–1520 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, X., Zhang, H., Da, X.: Orthogonal spline collocation scheme for multiterm fractional convection-diffusion equation with variable coefficients. Numer. Methods Partial Differ. Eq. 34, 555–574 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, X., Zhang, H., Da, X.: Orthogonal spline collocation scheme for the fourth-order diffusion system. Comput. Math. Appl. 75, 3172–3185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, X., Zhang, H., Da, X.: A high-order numerical method for solving the 2D fourth-order rection-diffusion equation. Numer. Algorithm 80(3), 847–877 (2019)

    Article  Google Scholar 

  36. Infante, J.A., Zuazua, E.: Boundary observability for the space semi-discretizations of the 1-D wave equation. Math. Model. Numer. Anal. (M2AN) 33(2), 407–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Komornik, V., Loreti, P.: Observability of square membranes by Fourier series methods. Bull. SUSU MMCS 8, 127–140 (2015)

    Article  MATH  Google Scholar 

  38. Loreti, P., Sforza, D.: Reachability problems for a class of integro-differential equations. J. Differ. Equ. 248, 1711–1755 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chen, T., Francis, B.: Optimal Sampled-Data Control Systems. Springer, London (1995)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China, contract grant numbers 11271123, 11671131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Natural Science Foundation of China, contract grant numbers 11671131, 11271123.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D. Observability Inequalities for Hermite Bi-cubic Orthogonal Spline Collocation Methods of 2-D Integro-differential Equations in the Square Domains. Appl Math Optim 84, 1341–1372 (2021). https://doi.org/10.1007/s00245-020-09680-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09680-5

Keywords

Mathematics Subject Classification

Navigation