Skip to main content
Log in

Employing Cold Spray to Alter the Residual Stress Distribution of Workpieces: A Case Study on Fusion-Welded AA2219 Joints

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Eight-millimeter-thick high-strength AA2219 aluminum alloy plates were successfully welded by variable polarity tungsten inert gas welding, and the effect of cold spraying (CS) process on the residual stress, microstructure and mechanical properties of the welded joints were investigated. The CS experiment was performed under different driving gas temperatures and pressures and with different powder types. The microstructure of the as-welded joints and as-coated joints was analyzed by optical microscopy and scanning electron microscopy, while the residual stress was measured by the blind-hole-drilling method. The results show that the CS process could significantly modify and re-distribute the residual stress of the welded joints. The maximum residual tensile stress of the welded joint has been significantly reduced by 111.9% and distributed more uniformly compared to the as-welded state. With the increase in gas temperature and/or pressure in CS, the residual tensile stress of joints was reduced, and even some compressive stress appeared. Among the powders of Cu, Al, and Ni, Cu particles have the best-improving effect. In addition, double-sided spraying treatment can reduce the residual tensile stress of both sides more effectively. Besides, the grain size of the joint surface after CS was refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Zhu, L. Huang, J.J. Li, X.X. Li, H.J. Ma, C.M. Wang, F. Ma, Strengthening Mechanism in Laser-Welded 2219 Aluminium Alloy Under the Cooperative Effects of Aging Treatment and Pulsed Electromagnetic Loadings. Mater. Sci. Eng. A 714, 124-139 (2018)

    Article  CAS  Google Scholar 

  2. W.F. Xu, J.H. Liu, G.H. Luan, C.L. Dong, Microstructure and Mechanical Properties of Friction Stir Welded Joints in 2219-T6 Aluminium Alloy. Mater. Design 30, 3460-3467 (2009)

    Article  CAS  Google Scholar 

  3. H. Li, J.S. Zou, J.S. Yao, H.P. Peng, The Effect of TIG Welding Techniques on Microstructure, Properties and Porosity of the Welded Joint of 2219 Aluminium Alloy. J. Alloys Compd. 727, 531-539 (2017)

    Article  CAS  Google Scholar 

  4. G.M. Owolabi, D.T. Bolling, A.A. Tiamiyu, R. Abu, A.G. Odeshi, H.A. Whitworth, Shear Strain Localization in AA 2219-T8 Aluminium Alloy at High Strain Rates. Mater. Sci. Eng. A 655, 212-220 (2016)

    Article  CAS  Google Scholar 

  5. B. Mehdi, R. Badji, V. Ji, B. Allili, D. Bradai, F. Deschaux-Beaume, F. Soulié, Microstructure and Residual Stresses in Ti-6Al-4V Alloy Pulsed and Unpulsed TIG Welds. J. Mater. Process. Technol. 231, 441-448 (2016)

    Article  CAS  Google Scholar 

  6. K.C. Ganesh, M. Vasudevan, K.R. Balasubramanian, N. Chandrasekhar, S. Mahadevan, P. Vasantharaja, T. Jayakumar, Modeling, Prediction and Validation of Thermal Cycles, Residual Stresses and Distortion in Type 316 LN Stainless Steel Weld Joint made by TIG Welding Process. Procedia Eng. 86, 767-774 (2014)

    Article  CAS  Google Scholar 

  7. P. Vasantharaja, M. Vasudevan, P. Palanichamy, Effect of Welding Processes on the Residual Stress and Distortion in Type 316LN Stainless Steel Weld Joints. J. Manuf. Process. 19, 187-193 (2015)

    Article  Google Scholar 

  8. J. Hensel, T. Nitschke-Pagel, D. Tchoffo Ngoula, H.-T. Beier, D. Tchuindjang, U. Zerbst, Welding Residual Stresses as Needed for the Prediction of Fatigue Crack Propagation and Fatigue Strength. Eng. Fract. Mech. 198, 123-141 (2018)

    Article  Google Scholar 

  9. S. Keller, S. Chupakhin, P. Staron, E. Maawad, N. Kashaev, B. Klusemann, Experimental and Numerical Investigation of Residual Stresses in Laser Shock Peened AA2198. J. Mater. Process. Technol. 255, 294-307 (2018)

    Article  CAS  Google Scholar 

  10. L.C. Xie, Y. Wen, K. Zhan, L.Q. Wang, C.H. Jiang, J. Vincent, Characterization on Surface Mechanical Properties of Ti-6Al-4V After Shot Peening. J. Alloy Compd. 666, 65-70 (2016)

    Article  CAS  Google Scholar 

  11. R.J. Sun, L.H. Li, Y. Zhu et al., Microstructure, Residual Stress and Tensile Properties Control of Wire-Arc Additive Manufactured 2319 Aluminium Alloy with Laser Shock Peening. J. Alloys Compd. 747, 255-265 (2018)

    Article  CAS  Google Scholar 

  12. R. Fernández, S. Cabeza, T. Mishurova, P. Fernández-Castrillo, G. González-Doncel, G. Bruno, Residual Stress and Yield Strength Evolution with Annealing Treatments in an Age-Hardenable Aluminium Alloy Matrix Composite. Mater. Sci. Eng. A 731, 344-350 (2018)

    Article  Google Scholar 

  13. W.Y. Li, R.R. Jiang, C.J. Huang, Z.H. Zhang, Y. Feng, Effect of Cold Sprayed Al Coating on Mechanical Property and Corrosion Behavior of Friction Stir Welded 2024-T351. Joint. Mater. Des. 65, 757-761 (2015)

    Article  CAS  Google Scholar 

  14. N. Li, W.Y. Li, X.W. Yang, Y. Feng, A. Vairis, An Investigation into the Mechanism for Enhanced Mechanical Properties in Friction Stir Welded AA2024-T3 Joints Coated with Cold Spraying. Appl. Surf. Sci. 439, 623-631 (2018)

    Article  CAS  Google Scholar 

  15. W.Y. Li, N. Li, X.W. Yang, Y. Feng, A. Vairis, Impact of Cold Spraying on Microstructure and Mechanical Properties of Optimized Friction Stir Welded AA2024-T3 Joint. Mater. Sci. Eng. A 702, 73-80 (2017)

    Article  CAS  Google Scholar 

  16. S. Yin, M. Meyer, W.Y. Li, H.L. Liao, R. Lupoi, Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A Review. J. Therm. Spray Technol. 25, 874-896 (2016)

    Article  Google Scholar 

  17. Y.K. Wei, X.T. Luo, Y. Ge, X. Chu, G.S. Huang, C.J. Li, Deposition of Fully Dense Al-Based Coatings Via In-Situ Micro-Forging Assisted Cold Spray for Excellent Corrosion Protection of AZ31B Magnesium Alloy. J. Alloy Compd. 806, 1116-1126 (2019)

    Article  CAS  Google Scholar 

  18. W.Y. Li, C.C. Cao, S. Yin, Solid-State Cold Spraying of Ti and Its Alloys: A Literature Review. Progr. Mater. Sci. 110, 100633 (2019)

    Article  Google Scholar 

  19. K. Yang, W.Y. Li, X.P. Guo, X.W. Yang, Y.X. Xu, Characterizations and Anisotropy of Cold-Spraying Additive-Manufactured Copper Bulk. J. Mater. Sci. Technol. 34, 1570-1579 (2018)

    Article  Google Scholar 

  20. W.Y. Li, X.P. Guo, C. Verdy, L. Dembinski, H.L. Liao, C. Coddet, Improvement of Microstructure and Property of Cold-Sprayed Cu-4at.%Cr-2at.%Nb Alloy by Heat Treatment. Scr. Mater. 55, 327-330 (2006)

    Article  CAS  Google Scholar 

  21. X.T. Luo, M.L. Yao, N.S. Ma, M. Takahashi, C.J. Li, Deposition Behavior, Microstructure and Mechanical Properties of an In-Situ Micro-Forging Assisted Cold Spray Enabled Additively Manufactured Inconel 718 Alloy. Mater. Des. 155, 384-395 (2018)

    Article  CAS  Google Scholar 

  22. K. Yang, W.Y. Li, C.J. Huang, X.W. Yang, Y.X. Xu, Optimization of Cold-Sprayed AA2024/Al2O3 Metal Matrix Composites Via Friction Stir Processing: Effect of Rotation Speeds. J. Mater. Sci. Technol. 34, 2167-2177 (2018)

    Article  Google Scholar 

  23. X.P. Guo, G. Zhang, W.Y. Li, Y. Gao, H.L. Liao, C. Coddet, Investigation of the Microstructure and Tribological Behavior of Cold-Sprayed Tin-Bronze-Base Composite Coatings. Appl. Surf. Sci. 255, 3822-3828 (2009)

    Article  CAS  Google Scholar 

  24. S. Yin, W.Y. Li, B. Song, X.C. Yan, M. Kuang, Y.X. Xu, K. Wen, R. Lupoi, Deposition of FeCoNiCrMn High Entropy Alloy (HEA) Coating Via Cold Spraying. J. Mater. Sci. Technol. 35, 1003-1007 (2019)

    Article  Google Scholar 

  25. W.Y. Li, K. Yang, S. Yin, X.W. Yang, Y.X. Xu, R. Lupoi, Solid-State Additive Manufacturing and Repairing by Cold Spraying: A Review. J. Mater. Sci. Technol. 34, 440-457 (2018)

    Article  Google Scholar 

  26. B.C. White, W.A. Story, L.N. Brewer, J.B. Jordon, Fatigue Behavior of Freestanding AA2024 and AA7075 Cold Spray Deposits. Int. J. Fatigue 112, 355-360 (2018)

    Article  CAS  Google Scholar 

  27. R. Ghelichi, S. Bagherifard, D. MacDonald, I. Fernandez-Pariente, B. Jodoin, M. Guagliano, Experimental and Numerical Study of Residual Stress Evolution in Cold Spray Coating. Appl. Surf. Sci. 288, 26-33 (2014)

    Article  CAS  Google Scholar 

  28. K. Spencer, V. Luzin, N. Matthews, M.X. Zhang, Residual Stresses in Cold Spraying Al Coatings: The Effect of Alloying and of Process Parameters. Surf. Coat Technol. 206, 4249-4255 (2012)

    Article  CAS  Google Scholar 

  29. S. Rech, A. Trentin, S. Vezzù, J.G. Legoux, E. Irissou, M. Guagliano, Influence of Preheated Al 6061 Substrate Temperature on the Residual Stresses of Multipass Al Coatings Deposited by Cold Spray. J. Therm. Spray. Technol. 20, 243-251 (2011)

    Article  CAS  Google Scholar 

  30. W.Y. Li, S. Yin, X.P. Guo, H.L. Liao, X.F. Wang, C. Coddet, An Investigation on Temperature Distribution Within the Substrate and Nozzle Wall in Cold Spraying by Numerical and Experimental Methods. J. Therm. Spray. Technol. 21, 41-48 (2012)

    Article  Google Scholar 

  31. K. Kumar, M. Masanta, S.K. Sahoo, Microstructure Evolution and Metallurgical Characteristic of Bead-on-Plate TIG Welding of Ti-6Al-4V Alloy. J. Mater. Process. Technol. 265, 34-43 (2019)

    Article  CAS  Google Scholar 

  32. B. Marzbanrad, H. Jahed, E. Toyserkani, On the Evolution of Substrate's Residual Stress During Cold Spray Process: A Parametric Study. Mater. Des. 138, 90-102 (2018)

    Article  CAS  Google Scholar 

  33. G.Q. Wang, Q. Li, Y.J. Li, A.P. Wu, N.X. Ma, D.Y. Yan, H.Q. Wu, Effects of Weld Reinforcement on Tensile Behavior and Mechanical Properties of 2219-T87 Aluminium Alloy TIG Welded Joints. Trans. Nonferr. Metals Soc. China 27, 10-16 (2017)

    Article  CAS  Google Scholar 

  34. N.B. Maledi, O.P. Oladijo, I. Botef, T. Ntsoane, A. Madiseng, M. Lebogang, Influence of Cold Spray Parameters on the Microstructures and Residual Stress of Zn Coatings Sprayed on Mild Steel. Surf. Coat. Technol. 318, 106-113 (2017)

    Article  CAS  Google Scholar 

  35. K. Spencer, V. Luzin, N. Matthews, M.-X. Zhang, Residual Stresses in Cold Spray Al Coatings: The Effect of Alloying and of Process Parameters. Surf. Coat. Technol. 206, 4249-4255 (2012)

    Article  CAS  Google Scholar 

  36. X.T. Luo, C.X. Li, F.L. Shang, G.J. Yang, Y.Y. Wang, C.J. Li, High Velocity Impact Induced Microstructure Evolution During Deposition of Cold Spray Coatings: A Review. Surf. Coat. Technol. 254, 11-20 (2014)

    Article  CAS  Google Scholar 

  37. T. Suhonen, T. Varis, S. Dosta, M. Torrell, J.M. Guilemany, Residual Stress Development in Cold Sprayed Al, Cu and Ti Coatings. Acta Mater. 61, 6329-6337 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (51574196 and U1637601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Y. Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on Advanced Residual Stress Analysis in Thermal Spray and Cold Spray Processes. This issue was organized by Dr. Vladimir Luzin, Australian Centre for Neutron Scattering; Dr. Seiji Kuroda, National Institute of Materials Science; Dr. Shuo Yin, Trinity College Dublin; and Dr. Andrew Ang, Swinburne University of Technology.

Appendix

Appendix

The residual stress is calculated by the following formulas:

$$\sigma_{x} = \frac{{\sigma_{1} + \sigma_{2} }}{2} + \frac{{\sigma_{1} - \sigma_{2} }}{2}\cos 2\gamma ,\quad \sigma_{y} = \frac{{\sigma_{1} + \sigma_{2} }}{2} - \frac{{\sigma_{1} - \sigma_{2} }}{2}\cos 2\gamma$$
(1)
$$\sigma_{{1}} { = }\frac{{E\left( {\varepsilon_{{0^{ \circ } }} + \varepsilon_{{90^{ \circ } }} } \right)}}{4A} + \frac{E}{4B}\sqrt {\left( {\varepsilon_{{0^{ \circ } }} + \varepsilon_{{90^{ \circ } }} } \right)^{2} + \left( {2\varepsilon_{{45^{ \circ } }} - \varepsilon_{{0^{ \circ } }} - \varepsilon_{{90^{ \circ } }} } \right)^{2} }$$
(2)
$$\sigma_{2} { = }\frac{{E\left( {\varepsilon_{{0^{ \circ } }} + \varepsilon_{{90^{ \circ } }} } \right)}}{4A} - \frac{E}{4B}\sqrt {\left( {\varepsilon_{{0^{ \circ } }} + \varepsilon_{{90^{ \circ } }} } \right)^{2} + \left( {2\varepsilon_{{45^{ \circ } }} - \varepsilon_{{0^{ \circ } }} - \varepsilon_{{90^{ \circ } }} } \right)^{2} }$$
(3)
$$\gamma = \frac{1}{2}\arctan \frac{{\varepsilon_{{0^{ \circ } }} - 2\varepsilon_{{45^{ \circ } }} + \varepsilon_{{90^{ \circ } }} }}{{\varepsilon_{{0^{ \circ } }} - \varepsilon_{{90^{ \circ } }} }}$$
(4)
$$A = - \frac{1 + \mu }{2}\frac{{r^{2} }}{{l_{1} l_{2} }},{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} B = - \frac{{8r^{2} }}{{l_{1} l_{2} }}\left[ {1 - \frac{1 + \mu }{4}\frac{{\left( {l_{1}^{2} + l_{1} l_{2} + l_{2}^{2} } \right)r^{2} }}{{l_{1} l_{2} }}} \right]$$
(5)

where \(\sigma_{x}\) and \(\sigma_{y}\) denote the transverse and longitudinal stresses, respectively, \(\sigma_{1}\) and \(\sigma_{2}\) are the first and second principal stresses, \(\varepsilon\) represents the strain with the subscripts 0°, 45° and 90° standing for the angles of rosette strain-gauge, E is the elastic modulus, \(\gamma\) is the angle between transverse direction and \(\sigma_{1}\), finally, A and B are the release factors calculated by Eq. 5, where \(\mu\) is the Poisson’s ratio, \(l_{1}\) and \(l_{2}\) are the distances from both ends of rosette strain-gauges to hole centers, and \(r\) is the hole radius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W.Y., Zou, Y.F., Wang, F.F. et al. Employing Cold Spray to Alter the Residual Stress Distribution of Workpieces: A Case Study on Fusion-Welded AA2219 Joints. J Therm Spray Tech 29, 1538–1549 (2020). https://doi.org/10.1007/s11666-020-01025-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01025-6

Keywords

Navigation