Skip to main content

Advertisement

Log in

Comparing Rates of Linage Diversification with Rates of Size and Shape Evolution in Catarrhine Crania

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Many authors have hypothesized an association between rates of morphological evolution and rates of species diversification, however, this association has yet to be empirically tested in the primate cranium. In this investigation, we used phylogeny-based approaches to examine the relationship between rates of species diversification, rates of cranial size and shape evolution, and observed cranial morphological disparity of extant catarrhines (Order: Primates). We used 34 3D landmarks digitized from 2038 crania representing 42 catarrhine species and a time-calibrated molecular phylogeny to determine the rates of evolution of cranial size and shape, rates of lineage diversification, and levels of morphological disparity by clade. The only significant relationship among these variables was for evolutionary rates of size and shape change. We discuss these results in the context of primate and mammalian macroevolution, and in light of the proposed hypothesis that size is a “line of least evolutionary resistance” in cranial evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, D. C. (2014). Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data. Systematic Biology. https://doi.org/10.1093/sysbio/syt10.

    Article  PubMed  Google Scholar 

  • Adams, D. C., Berns, C. M., Kozak, K. H., & Wiens, J. J. (2009). Are rates of species diversification correlated with rates of morphological evolution? Proceedings of Royal Society B Biological Science. https://doi.org/10.1098/rspb.2009.0543.

    Article  Google Scholar 

  • Adams, D. C., & Otárola-Castillo, E. (2013). Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution,4, 393–399.

    Google Scholar 

  • Arbour, J. H., & Santana, S. E. (2017). A major shift in diversification rate helps explain macroevolutionary patterns in primate species diversity. Evolution,71, 1600–1613.

    PubMed  Google Scholar 

  • Arnold, C., Matthews, L. J., & Nunn, C. L. (2010). The 10kTrees Website: A new online resourse for primate phylogeny. Evolutionary Anthropology,19, 114–118.

    Google Scholar 

  • Baab, K. L., & McNulty, K. P. (2009). Size, shape, and asymmetry in fossil hominins: The status of the LB1 cranium based on 3D morphometric analyses. Journal of Human Evolution. https://doi.org/10.1016/j.jhevol.2008.08.011.

    Article  PubMed  Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cardini, A., & Elton, S. (2008). Variation in guenon skulls (I): Species divergence, ecological and genetic differences. Journal of Human Evolution,54, 615–637.

    PubMed  Google Scholar 

  • Cardini, A. & Elton, S. (2009). The radiation of red colobus monkeys (Primates, Colobinae): Morphological evolution in a clade of endangered African primates. Society, 68, 197–224.

  • Cheverud, J. M. (1982). Relationships among ontogenetic, static, and evolutionary allometry. American Journal of Physical and Anthropology. https://doi.org/10.1002/ajpa.1330590204.

    Article  Google Scholar 

  • Clauset, A., & Erwin, D. H. (2008). The evolution and distribution of species body size. Science,321(5887), 399–401.

    CAS  PubMed  Google Scholar 

  • Cobb, S. N., & O’Higgins, P. (2004). Hominins do not share a common postnatal facial ontogenetic shape trajectory. Journal of Experimental Zoology B,302, 302–321.

    CAS  Google Scholar 

  • Cobb, S. N., & O’Higgins, P. (2007). The ontogeny of sexual dimorphism in the facial skeleton of the African apes. Journal of Human Evolution,53, 176–190.

    PubMed  Google Scholar 

  • Cochard, L. R. (1985). Ontogenetic allometry of the skull and dentition of the rhesus monkey (Macaca mulatto). Size and scaling in primate biology (pp. 231–255). Boston, MA: Springer.

    Google Scholar 

  • Collard, M., & O’Higgins, P. (2001). Ontogeny and homoplasy in the papionin face. Evolutionary Development,3, 322–331.

    CAS  Google Scholar 

  • Collyer, M. L., Adams, D. C. (2019). RRPP: Linear Model Evaluation with Randomized Residuals in a Permutation Procedure. R package version 0.4.

  • Cooney, C. R., Bright, J. A., Capp, E. J. R., Chira, A. M., Hughes, E. C., Moody, C. J. A., et al. (2017). Mega-evolutionary dynamics of the adaptive radiation of birds. Nature,542, 344–347.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, N., & Purvis, A. (2009). What factors shape rates of phenotypic evolution? A comparative study of cranial morphology of four mammalian clades. Journal of Evolutionary Biology,22, 1024–1035.

    CAS  PubMed  Google Scholar 

  • Denton, J. S. S., & Adams, D. C. (2015). A new phylogenetic test for comparing multiple high-dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae). Evolution. https://doi.org/10.1111/evo.12743.

    Article  PubMed  Google Scholar 

  • Disotell, T. R., Honeycutt, R. L., & Ruvolo, M. (1992). Mitochondrial DNA phylogeny of the Old-World monkey tribe Papionini. Molecualr Biology and Evolution. https://doi.org/10.1002/jbmr.2552.

    Article  Google Scholar 

  • Elton, S., Dunn, J., & Cardini, A. (2010). Size variation facilitates population divergence but does not explain it all: An example study from a widespread African monkey. Biological Journal of the Linnean Society. https://doi.org/10.1111/j.1095-8312.2010.01504.x.

    Article  Google Scholar 

  • Fabre, P. H., Rodrigues, A., & Douzery, E. J. P. (2009). Patterns of macroevolution among primates inferred from a supermatrix of mitochondrial and nuclear DNA. Molecular Phylogenetics and Evolution,53, 808–825.

    CAS  PubMed  Google Scholar 

  • Fleagle, J. G. (1978). Size distributions of living and fossil primate faunas. Paleobiology,4(1), 67–76.

    Google Scholar 

  • Fleagle, J. G. (2013). Primate adaptation and evolution (3rd ed.). New York: Elsevier.

    Google Scholar 

  • Fleagle, J. G., Gilbert, C. C., & Baden, A. L. (2010). Primate cranial diversity. American Journal of Physical and Anthropology. https://doi.org/10.1002/ajpa.21272.

    Article  Google Scholar 

  • Fleagle, J. G., Gilbert, C. C., & Baden, A. L. (2016). Comparing primate crania: The importance of fossils. American Journal of Physical and Anthropology. https://doi.org/10.1002/ajpa.23026.

    Article  Google Scholar 

  • Foote, M. (1997). The evolution of morphological diversity. Annual Review on Ecological System. https://doi.org/10.1146/annurev.ecolsys.28.1.129.

    Article  Google Scholar 

  • Freedman, L. (1957). The fossil Cercopithecoidea of South Africa. Annals on Transvaal Museum. https://doi.org/10.1001/archinte.167.3.271.

    Article  Google Scholar 

  • Frost, S. R., Marcus, L. F., Bookstein, F. L., Reddy, D. P., & Delson, E. (2003). Cranial allometry, phylogeography, and systematics of large-bodied papionins (primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark data. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology,275, 1048–1072.

    PubMed  Google Scholar 

  • Gavrilets, S., & Losos, J. B. (2009). Adaptive radiation: contrasting theory with data. Science,323, 732–737.

    CAS  PubMed  Google Scholar 

  • Gerber, S., Eble, G. J., & Neige, P. (2008). Allometric space and allometric disparity: A developmental perspective in the macroevolutionary analysis of morphological disparity. Evolution: International Journal of Organic Evolution,62, 1450–1457.

    Google Scholar 

  • Gilbert, C. C., Frost, S. R., & Strait, D. S. (2009). Allometry, sexual dimorphism, and phylogeny: A cladistic analysis of extant African papionins using craniodental data. Journal of Human Evolution,57, 298–320.

    PubMed  Google Scholar 

  • Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological Review. https://doi.org/10.1111/j.1469-185X.1966.tb01624.x.

    Article  Google Scholar 

  • Gould, S. J. (1997). Cope’s rule as psychological artefact. Nature,385, 199–200.

    CAS  Google Scholar 

  • Gunz, P. (2012). Evolutionary relationships among robust and gracile australopiths: An “evo-devo” perspective. Evolution on Biology. https://doi.org/10.1007/s11692-012-9185-4.

    Article  Google Scholar 

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2007). GEIGER: investigating evolutionary radiations. Bioinformatics,24(1), 129–131.

    PubMed  Google Scholar 

  • Harvati, K. (2003). The Neanderthal taxonomic position: Models of intra- and inter-specific craniofacial variation. Journal of Human Evolution. https://doi.org/10.1016/S0047-2484(02)00208-7.

    Article  PubMed  Google Scholar 

  • Herrera, J. P. (2017). Primate diversification inferred from phylogenies and fossils. Evolution,71, 2845–2857.

    PubMed  Google Scholar 

  • Hone, D. W. E., & Benton, M. J. (2007). Cope's Rule in the Pterosauria, and differing perceptions of Cope's Rule at different taxonomic levels. Journal of Evolutionary Biology,20, 1164–1170.

    CAS  PubMed  Google Scholar 

  • Huxley, J. (1932). Problems of relative growth. New York: Dial Press.

    Google Scholar 

  • Jablonski, D. (1997). Body-size evolution in Cretaceous molluscs and the status of Cope’s rule. Nature, 385(6613), 250–252.

    CAS  Google Scholar 

  • Jones, K. E., Smaers, J. B., & Goswami, A. (2015). Impact of the terrestrial-aquatic transition on disparity and rates of evolution in the carnivoran skull. BMC Evolutionary Biology,15, 8.

    PubMed  PubMed Central  Google Scholar 

  • Kamilar, J. M., & Martin, S. K. (2018). Combining biogeographic and phylogenetic data to examine primate speciation: An example using Cercopithecin monkeys. Biotropica,41, 514–519.

    Google Scholar 

  • Klingenberg, C. P. (1998). Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biological Reviews,73, 79–123.

    CAS  PubMed  Google Scholar 

  • Klingenberg, C. P. (2016). Size, shape, and form: concepts of allometry in geometric morphometrics. Development Genes and Evolution,226, 113–137.

    PubMed  PubMed Central  Google Scholar 

  • Koyabu, D. B., & Endo, H. (2009). Craniofacial variation and dietary adaptations of African colobines. Journal of Human and Evolution,56, 525–536.

    Google Scholar 

  • LaBarbera, M. (1989). Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics,20(1), 97–117.

    Google Scholar 

  • Leigh, S. R. (2007). Homoplasy and the evolution of ontogeny in papionin primates. Journal of Human Evolution,52(5), 536–558.

    PubMed  Google Scholar 

  • Lieberman, D. E., Pearson, O. M., & Mowbray, K. M. (2000). Basicranial influence on overall cranial shape. Journal of Human Evolution,38(2), 291–315.

    CAS  PubMed  Google Scholar 

  • Li, W. H., Ellsworth, D. L., Krushkal, J., Chang, B. H. J., & Hewett-Emmett, D. (1996). Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Molecular Phylogenetics and Evolution,5, 182–187.

    CAS  PubMed  Google Scholar 

  • Magallon, S., & Sanderson, M. J. (2001). Absolute diversification rates in angiosperm clades. Evolution,55, 1762–1780.

    CAS  PubMed  Google Scholar 

  • Mahler, D. L., Revell, L. J., Glor, R. E., & Losos, J. B. (2010). Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution,64(9), 2731–2745.

    PubMed  Google Scholar 

  • Marcus, L. F., & Corti, M. (1996). Overview of the new, or geometric morphometrics. In L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, & D. E. Slice (Eds.), Advances in morphometrics (pp. 1–13). New York: Plenum Press.

    Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of New World monkeys. Evolution,55(12), 2576–2600.

    CAS  PubMed  Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2005). Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution. https://doi.org/10.1111/j.0014-3820.2005.tb01049.x.

    Article  PubMed  Google Scholar 

  • Marroig, G., & Cheverud, J. (2010). Size as a line of least resistance II: Direct selection on size or correlated response due to constraints. Evolution. https://doi.org/10.1111/j.1558-5646.2009.00920.x.

    Article  PubMed  Google Scholar 

  • McNulty, K. P. (2004). A geometric morphometric assessment of hominoid crania: Conservative African apes and their liberal implications. Annals of Anatomy. https://doi.org/10.1016/S0940-9602(04)80077-3.

    Article  PubMed  Google Scholar 

  • McNulty, K. P. (2010). Apes and tricksters: The evolution and diversification of humans’ closest relatives. Evolution: Education and Outreach,3(3), 322.

    Google Scholar 

  • McNulty, K. P., Frost, S. R., & Strait, D. S. (2006). Examining affinities of the Taung child by developmental simulation. Journal of Human Evolution. https://doi.org/10.1016/j.jhevol.2006.04.005.

    Article  PubMed  Google Scholar 

  • Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., & Bookstein, F. L. (2004). Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution,46, 679–697.

    PubMed  Google Scholar 

  • Moen, D., & Morlon, H. (2014). Why does diversification slow down? Trends on Ecology,29, 190–197.

    Google Scholar 

  • O'Meara, B. C. O., Ané, C., Sanderson, M. J., & Wainwright, P. C. (2016). Testing for Different Rates of Continuous Trait Evolution Using Likelihood. Evolution,60, 922–933.

    Google Scholar 

  • Perelman, P., Johnson, W. E., Roos, C., Seuánez, H. N., Horvath, J. E., Moreira, M. A. M., et al. (2011). A molecular phylogeny of living primates. PLoS Genetics. https://doi.org/10.1371/journal.pgen.1001342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez, S. I., Klaczko, J., Rocatti, G., & dos Reis, S. F. (2011). Patterns of cranial shape diversification during the phylogenetic branching process of New World monkeys (Primates: Platyrrhini). Journal of Evolutionary Biology. https://doi.org/10.1111/j.1420-9101.2011.02309.x.

    Article  PubMed  Google Scholar 

  • Pilbeam, D., & Gould, S. J. (1974). Size and scaling in human evolution. Science. https://doi.org/10.1126/science.186.4167.892.

    Article  PubMed  Google Scholar 

  • Pugh, K. D., & Gilbert, C. C. (2018). Phylogenetic relationships of living and fossil African papionins: Combined evidence from morphology and molecules. Journal of Human Evolution,123, 35–51.

    PubMed  Google Scholar 

  • Purvis, A., Nee, S., & Harvey, P. H. (1995). Macroevolutionary inferences from primate phylogeny. Proceedings Royal Society B Biological Science,260, 329–333.

    CAS  Google Scholar 

  • R Core Team. (2013). R: A language and environment for statistical computing. Austria, Vienna: R foundation for statistical computing.

    Google Scholar 

  • Rabosky, D. L., & Adams, D. C. (2012). Rates of morphological evolution are correlated with species richness in salamanders. Evolution. https://doi.org/10.1111/j.1558-5646.2011.01557.x.

    Article  PubMed  Google Scholar 

  • Rabosky, D. L., Santini, F., Eastman, J., Smith, S. A., Sidlauskas, B., Chang, J., et al. (2013). Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature Communication,4, 1–8.

    Google Scholar 

  • Ravosa, M. J. (1991). The ontogeny of cranial sexual dimorphism in two old world monkeys: Macaca fascicularis (Cercopithecinae) and Nasalis larvatus (Colobinae). International Journal of Primatology. https://doi.org/10.1007/BF02547620.

    Article  Google Scholar 

  • Ravosa, M. J. (1992). Allometry and heterochrony in extant and extinct Malagasy primates. Journal of Human Evolution. https://doi.org/10.1016/0047-2484(92)90107-K.

    Article  Google Scholar 

  • Ravosa, M. J., & Profant, L. P. (2000). Evolutionary morphology of the skull in Old World monkeys. In P. F. Whitehead & C. J. Jolly (Eds.), Old World Monkeys (pp. 237–268). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ricklefs, R. (2006). Time, species, and the generation of trait variance in clades. Systematic Biology,55, 151–159.

    PubMed  Google Scholar 

  • Rohlf, F. J. (1999). Shape statistics: Procrustes superimpositions and tangent spaces. Journal of Classification,16, 197–223.

    Google Scholar 

  • Rowe, K. C., Aplin, K. P., Baverstock, P. R., & Moritz, C. (2011). Recent and rapid speciation with limited morphological disparity in the genus rattus. Systematic Biology,60, 188–203.

    PubMed  Google Scholar 

  • Schaefer, K., Mitteroecker, P., Gunz, P., Bernhard, M., & Bookstein, F. L. (2004). Craniofacial sexual dimorphism patterns and allometry among extant hominids. Annals of Anatomy,186, 471–478.

    PubMed  Google Scholar 

  • Schmidt-Nielsen, K. (1984). Scaling: why is animal size so important?. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution,50, 1766–1774.

    PubMed  Google Scholar 

  • Schluter, D. (2000). The ecology of adaptive radiation. Oxford: OUP.

    Google Scholar 

  • Shea, B. T. (1981). Relative growth of the limbs and trunk in the African apes. American Journal of Physical Anthropology,56(2), 179–201.

    CAS  PubMed  Google Scholar 

  • Shea, B. T. (1983). Phyletic size change and brain/body allometry: A consideration based on the African pongids and other primates. International Journal of Primatology. https://doi.org/10.1007/BF02739359.

    Article  PubMed  Google Scholar 

  • Shea, B. T. (1985). Ontogenetic allometry and scaling: a discussion based on the growth and form of the skull in African apes. In W. J. Jungers (Ed.), Size and scaling in primate biology (pp. 175–202). New York: Plenum Press.

    Google Scholar 

  • Shea, B. T. (1995). Ontogenetic scaling and size correction in the comparative study of primate adaptations. Anthropologie (1962), 33(1/2), 1–16.

    Google Scholar 

  • Simpson, G. G. (1953). Major features of evolution. New York: Columbia University Press.

    Google Scholar 

  • Singleton, M. (2002). Patterns of cranial shape variation in the Papionini (Primates: Cercopithecinae). Journal of Human Evolution,42, 547–578.

    PubMed  Google Scholar 

  • Singleton, M. (2005). Functional shape variation in the cercopithecine masticatory complex. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 319–348). Boston, MA: Springer Press.

    Google Scholar 

  • Singleton, M. (2012). Postnatal cranial development in papionin primates: An alternative model for hominin evolutionary development.

  • Singleton, M. (2013). Primate cranial diversity. Nature Education Knowledge,4(12), 1.

    Google Scholar 

  • Slater, G. J. (2013). Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary. Methods Ecology and Evolution. https://doi.org/10.1111/2041-210X.12084.

    Article  Google Scholar 

  • Slice, D. E. (1998). Morpheus et al.: Software for morphometric research. Stony Brook: Department of Ecology and Evolution, State University of New York.

    Google Scholar 

  • Smith, F. A., Boyer, A. G., Brown, J. H., Costa, D. P., Dayan, T., Ernest, S. M., et al. (2010). The evolution of maximum body size of terrestrial mammals. Science,330(6008), 1216–1219.

    CAS  PubMed  Google Scholar 

  • Stanley, S. M. (1979). Macroevolution, pattern and process. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Steiper, M. E., & Seiffert, E. R. (2012). Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proceedings of National Academic Science United States of America. https://doi.org/10.1073/pnas.1119506109.

    Article  Google Scholar 

  • Springer, M. S., Meredith, R. W., Gatesy, J., Emerling, C. A., Park, J., Rabosky, D. L., et al. (2012). Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS ONE,7, e49521.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ungar, P. S., & Hlusko, L. J. (2016). The evolutionary path of least resistance. Science,353, 29–30.

    CAS  PubMed  Google Scholar 

  • Venditti, C., Meade, A., & Pagel, M. (2011). Multiple routes to mammalian diversity. Nature,479, 393–396.

    CAS  PubMed  Google Scholar 

  • Xing, J., Wang, H., Zhang, Y., Ray, D. A., Tosi, A. J., Disotell, T. R., et al. (2007). A mobile element-based evolutionary history of guenons (tribe Cercopithecini). BMC Biology,5, 1–10.

    Google Scholar 

  • Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2012). Geometric morphometrics for biologists: a primer (2nd ed.). San Diego: Elsevier Academic Press.

    Google Scholar 

Download references

Acknowledgements

Thank you to all those who provided access to specimens in their care: Dr. Kevin Kuykendal, Anatomy Department, University of the Witwatersrand, Johannesburg; Dr. Ina Plug, Transvaal Museum, Pretoria; Chris Stringer, Louise Humphry and Rob Kruszynski, and Dr. Paula Jenkins, British Museum (Natural History), London; the staff of the Powell-Cotton Museum, Birchington; Yoel Rak, University of Tel Aviv; Henry de Lumley, Marie-Antoinette de Lumley and Dominique Grimaud-Herve´, Institut de Pale´olontologie Humaine; Roberto Macchiarelli and Luca Bondioli, Museo Pigorini; Patrick Semal, Institut Royal des Sciences Naturelles; Maria Teschler, Naturhistorisches Museum; Andre´ Langaney and Mario Chech, Muse´e de l’Homme; Horst Seidler and Sylvia Kirchengast, University of Vienna; Niels Lynnerup, University of Copenhagen; Emmanuel Gilissen and Wim van Neer, Muse´e Royal de l’Afrique Centrale; Georges Lenglet (Royal Belgian Institute of Natural Sciences); Jacques Repe´perant and Francis Renoult, Muse´e National d’Histoire Naturelle, Paris; Prof. Wolfgang Maier, Lehrstuhl fu¨ r Spezielle Zoologie, Universita¨t Tu¨ bingen; Dr. G. Storch, Forschungsinstitut Senkenberg, Frankfurt; Dr. Richard Thorington, Linda Gordon, Darren Lunde, and Eileen Westwig, National Museum of Natural History, Smithsonian Institution, Washington, D.C.; Drs. Chris Norris, Ross MacPhee, Nancy Simmons, and Robert Randall, American Museum of Natural History, New York; Ian Tattersall, Gary Sawyer and Ken Mowbray, Department of Anthropology, American Museum of Natural History; Lawrence Heaney and William Stanley (Field Museum of Natural History); Craig Hood and Nelson Rios (Tulane University Museum of Natural History). This is NYCEP Morphometrics Contribution #112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan A. Simons.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simons, E.A., Frost, S.R., Harvati, K. et al. Comparing Rates of Linage Diversification with Rates of Size and Shape Evolution in Catarrhine Crania. Evol Biol 47, 152–163 (2020). https://doi.org/10.1007/s11692-020-09500-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-020-09500-2

Keywords

Navigation