Skip to main content
Log in

Temperature dependence of temperature sensitivity of resonant mode of a long period fiber grating

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper presents experiment and analysis on variation of temperature sensitivity of resonant modes of a long period grating (LPG) with change in temperature. The theoretical analysis explains the corresponding experimental data on temperature sensitivity of LPGs written in house in Ge-B codoped and H2-loaded telecom fiber. The LPGs were first annealed for thermal stability. The average temperature sensitivity of annealed gratings investigated in range 50–300 °C for LPGs in Ge-B codoped fiber and in the range 50–500 °C for LPGs in hydrogenated SMF-28 fiber. The temperature sensitivity increased with temperature. However, the absolute value of temperature sensitivity decreased for LPGs in Ge-B fiber. The analysis shows that the temperature dependence of nonlinear evolution of resonant wavelength is due to second order partial derivatives of differential effective refractive index of a resonant mode with respect to temperature and wavelength. The linearity of temperature sensitivity depends on first and second order partial derivatives of effective refractive indices of core and cladding modes coupled. The study will help in design and development of LPG based devices and sensors operating at elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.O. Hill, B. Malo, K.A. Vineberg, F. Bilodeau, D.C. Johnson, I. Skinner, Electron. Lett. 26, 1270 (1990)

    Article  Google Scholar 

  2. T. Erdogan, J. Opt. Soc. Am. A 14(8), 1760 (1997)

    Article  ADS  Google Scholar 

  3. V. Bhatia, A. Vengsarkkar, Opt. Lett. 21(9), 692 (1996)

    Article  ADS  Google Scholar 

  4. A. Vengsarkar, J. Lightwave Technol. 14(1), 58 (1996)

    Article  ADS  Google Scholar 

  5. T. Erdogan, J.E. Sipe, J. Opt. Soc. Am. A 13(2), 296 (1996)

    Article  ADS  Google Scholar 

  6. R. Kashyap, 1999 Fibre Bragg Gratings (Academic, New York, 1999)

    Google Scholar 

  7. S. James, S. Korposh, S. Lee, R. Tatam, Opt. Exp. 22, 8012 (2014)

    Article  ADS  Google Scholar 

  8. P. Heather, A. Kersey, F. Bucholtz, J. Lightwave Technol. 16, 1606 (1998)

    Article  ADS  Google Scholar 

  9. Z. Bai, W. Zhang, S. Gao, H. Zhang, L. Wang, F. Liu, Opt. Fiber Tech. 21, 110 (2015)

    Article  ADS  Google Scholar 

  10. M. Smietana, W. Bock, P. Mikulic, J. Chen, Sensors 10, 11301 (2010)

    Article  Google Scholar 

  11. M. Richter, M. Dominik, E. Rozniecka, M. Koba, P. Mikulic, W. Bock, M. Los, M. Smietana, J. Jonsson, Sens. Actuators B Chem. 250, 32 (2017)

    Article  Google Scholar 

  12. X. Shu, L. Zhang, I. Bennion, J. Lightwave Tech. 20, 255 (2002)

    Article  ADS  Google Scholar 

  13. S. James, R. Tatam, Meas. Sci. Technol. 14, R49 (2003)

    Article  ADS  Google Scholar 

  14. V. Bhatia, Opt. Express 4, 457 (1999)

    Article  ADS  Google Scholar 

  15. G. Rego, O. Okhotnikov, E. Dianov, V. Sulimov, J. Lightwave Technol. 19, 1574 (2001)

    Article  ADS  Google Scholar 

  16. D. Davis, T. Gaylord, E. Glytsis, S. Kosinski, S. Mettler, A. Vengsarkar, Electron. Lett. 34, 302 (1998)

    Article  Google Scholar 

  17. A. Kalachev, D. Nikogosyan, D. Brambilla, J. Lightwave Tech. 23, 2568 (2005)

    Article  ADS  Google Scholar 

  18. A. Kalachev, V. Pureur, D. Nikogosyan, Opt. Commun. 246, 107 (2005)

    Article  ADS  Google Scholar 

  19. R. Costa, R. Kamikawachi, M. Muller, J. Fabris, Opt. Commun. 282, 816 (2009)

    Article  ADS  Google Scholar 

  20. T. Mizunami, T. Fukuda, A. Hayashi, Meas. Sci. Technol. 15, 1467 (2004)

    Article  ADS  Google Scholar 

  21. O. Prakash, R. Mahakud, S.K. Dixit, U. Nundy, Opt. Commun. 263, 65 (2006)

    Article  ADS  Google Scholar 

  22. B. Guan, H. Tam, S. Ho, S. Liu, X. Dong, IEEE Photon. Technol. Lett. 12, 642 (2000)

    Article  ADS  Google Scholar 

  23. T. Erdogan, V. Mizrahi, P.J. Lemaire, D. Monroe, J. Appl. Phys. 76, 73 (1994)

    Article  ADS  Google Scholar 

  24. M. Ng, K. Chiang, Opt. Commun. 208, 321 (2002)

    Article  ADS  Google Scholar 

  25. J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, J. Noncryst. Solids 135, 86 (1991)

    Article  ADS  Google Scholar 

  26. G. Ghosh, M. Endo, T. Iwasalu, J. Light Wave Techno. 12, 1338 (1994)

    Article  ADS  Google Scholar 

  27. G. Ghosh, Appl. Opt. 36, 1540 (1997)

    Article  ADS  Google Scholar 

  28. Scott glass technical information: TIE-19, (2016)

  29. J. Wray, J. Neu, J. Opt. Soc. Am. 59, 774 (1969)

    Article  ADS  Google Scholar 

  30. L. Moretti, M. Iodice, F. Corte, I. Rendina, J. Appl. Phy. 98, 036101 (2005)

    Article  ADS  Google Scholar 

  31. A. Gordon, M. Flockhart, R. Maier, J. Barton, W. MacPherson, J. Jones, K. Chisholm, L. Zhang, I. Bennion, I. Read, P.D. Foote, Appl. Opt. 43, 2744 (2004)

    Article  ADS  Google Scholar 

  32. R. Mahakud, J. Kumar, O. Prakash, S. Dixit, Appl. Opt. 52, 7570 (2013)

    Article  ADS  Google Scholar 

  33. E. Filho, M. Baiad, M. Gagne, R. Kashyap, Opt. Exp. 22, 27681 (2014)

    Article  ADS  Google Scholar 

  34. K. Chiang, Y. Liu, M. Ng, X. Dong, Electron. Lett. 36, 966 (2000)

    Article  Google Scholar 

  35. F. Piaoa, W. Oldham, E. Haller, J. Appl. Phy. 87, 3287 (2000)

    Article  ADS  Google Scholar 

  36. T. Ill, C. Smith, N. Borrelli, D. Allan, J. Noncryst. Solids 222, 407 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mahakud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahakud, R., Kumar, J., Prakash, O. et al. Temperature dependence of temperature sensitivity of resonant mode of a long period fiber grating. Appl. Phys. B 126, 90 (2020). https://doi.org/10.1007/s00340-020-07441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07441-4

Navigation