Skip to main content

Advertisement

Log in

Data-driven selection of actuators for optimal control of airfoil separation

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We present a systematic approach for determining the optimal actuator location for separation control from input–output response data, gathered from numerical simulations or physical experiments. The Eigensystem realization algorithm is used to extract state-space descriptions from the response data associated with a candidate set of actuator locations. These system realizations are then used to determine the actuator location among the set that can drive the system output to an arbitrary value with minimal control effort. The solution of the corresponding minimum energy optimal control problem is evaluated by computing the generalized output controllability Gramian. We use the method to analyze high-fidelity numerical simulation data of the lift and separation angle responses to a pulse of localized body-force actuation from six distinct locations on the upper surface of a NACA 65(1)-412 airfoil. We find that the optimal location for controlling lift is different from the optimal location for controlling separation angle. In order to explain the physical mechanisms underlying these differences, we conduct controllability analyses of the flowfield by leveraging the dynamic mode decomposition with control algorithm. These modal analyses of flowfield response data reveal that excitation of coherent structures in the wake benefits lift control, whereas excitation of coherent structures in the shear layer benefits separation angle control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Although finite time-horizons can be considered, we choose to focus on the infinite time-horizon case in order to maintain objectivity in the optimality measure; the solution to the finite time-horizon problem is dependent on the final time, which can be undesirable because the final time can always be chosen to influence the outcome of the optimality measure.

  2. Tustin’s approximation allows for conversion between continuous-time and discrete-time representations of a dynamic system. Given the sampling time \(T_s\), the approximation leverages a bilinear Tustin transformation to map between all points in the s-plane and the z-plane:

    $$\begin{aligned} z = e^{sT_s} \approx \frac{1+sT_s/2}{1-sT_s/2}. \end{aligned}$$

    The transformation is sometimes used to relate optimal control problems formulated in continuous-time to counterparts in discrete-time and vice versa.

References

  1. Gad-el-Hak, M.: Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Williams, D.R., MacMynowski, D.G.: Brief history of flow control. In: Joslin, R.D., Miller, D.N. (eds.) Fundamentals and Applications of Modern Flow Control, pp. 1–20. American Institute of Aeronautics and Astronautics, Reston (2009)

    Google Scholar 

  3. Cattafesta, L.N., Sheplak, M.: Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247–272 (2011)

    MATH  Google Scholar 

  4. Sosa, R., Artana, G., Moreau, E., Touchard, G.: Stall control at high angle of attack with plasma sheet actuators. Exp. Fluids 42(1), 143–167 (2007)

    Google Scholar 

  5. Little, J., Samimy, M.: High-lift airfoil separation with dielectric barrier discharge plasma actuation. AIAA J. 48(12), 2884–2898 (2010)

    Google Scholar 

  6. Mabe, J., Calkins, F., Wesley, B., Woszidlo, R., Taubert, L., Wygnanski, I.: Single dielectric barrier discharge plasma actuators for improved airfoil performance. J. Aircr. 46(3), 847–855 (2009)

    Google Scholar 

  7. Cerretelli, C., Kirtley, K.: Boundary layer separation control with fluidic oscillators. J. Turbomach. 131(4), 041001 (2009)

    Google Scholar 

  8. Gregory, J., Tomac, M.N.: A review of fluidic oscillator development. In: AIAA Paper, p. 2474 (2013)

  9. Woszidlo, R., Wygnanski, I.: Parameters governing separation control with sweeping jet actuators. In: AIAA Paper p. 3172 (2011)

  10. Seo, J.H., Zhu, C., Mittal, R.: Flow physics and frequency scaling of sweeping jet fluidic oscillators. AIAA J. 56(6), 2208–2219 (2018)

    Google Scholar 

  11. Ostermann, F., Woszidlo, R., Nayeri, C.N., Paschereit, C.O.: The interaction between a spatially oscillating jet emitted by a fluidic oscillator and a crossflow. J. Fluid Mech. 863, 215–241 (2018)

    Google Scholar 

  12. Amitay, M., Smith, B., Glezer, A.: Aerodynamic flow control using synthetic jet technology. In: 36th AIAA Aerospace Sciences Meeting and Exhibit (1998)

  13. Glezer, A., Amitay, M.: Synthetic jets. Annu. Rev. Fluid Mech. 34(1), 503–529 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Hemati, M., Deem, E., Williams, M., Rowley, C.W., Cattafesta, L.N.: Improving separation control with noise-robust variants of dynamic mode decomposition. In: 54th AIAA Aerospace Sciences Meeting, p. 1103 (2016)

  15. Deem, E., Cattafesta, L., Yao, H., Hemati, M., Zhang, H., Rowley, C.: Experimental implementation of modal approaches for autonomous reattachment of separated flows. In: AIAA Aerospace Sciences Meeting, AIAA Paper, p. 1052 (2018)

  16. Seo, J., Cadieux, F., Mittal, R., Deem, E., Cattafesta, L.: Effect of synthetic jet modulation schemes on the reduction of a laminar separation bubble. Phys. Rev. Fluids 3, 033901 (2018)

    Google Scholar 

  17. Seifert, A., Bachar, T., Koss, D., Shepshelovich, M., Wygnanski, I.: Oscillatory blowing: a tool to delay boundary-layer separation. AIAA J. 31(11), 2052–2060 (1993)

    Google Scholar 

  18. Yarusevych, S., Kawall, J., Sullivan, P.E.: Airfoil performance at low Reynolds numbers in the presence of periodic disturbances. J. Fluids Eng. 128(3), 587–595 (2006)

    Google Scholar 

  19. Postl, D., Balzer, W., Fasel, H.: Control of laminar separation using pulsed vortex generator jets: direct numerical simulations. J. Fluid Mech. 676, 81–109 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Marxen, O., Kotapati, R., Mittal, R., Zaki, T.: Stability analysis of separated flows subject to control by zero-net-mass-flux jet. Phys. Fluids 27(2), 024107 (2015)

    Google Scholar 

  21. Yarusevych, S., Kotsonis, M.: Steady and transient response of a laminar separation bubble to controlled disturbances. J. Fluid Mech. 813, 955–990 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Raju, R., Mittal, R., Cattafesta, L.: Dynamics of airfoil separation control using zero-net mass-flux forcing. AIAA J. 46(12), 3103–3115 (2008)

    Google Scholar 

  23. Mittal, R., Kotapati, R.B.: Resonant mode interaction in a canonical separated flow. In: IUTAM Symposium on Laminar-Turbulent Transition. Springer, Berlin, pp. 341–348 (2006)

  24. Mittal, R., Kotapati, R., Cattafesta, L.: Numerical study of resonant interactions and flow control in a canonical separated flow. In: 43rd AIAA aerospace sciences meeting and exhibit, p. 1261. AIAA (2005)

  25. Yeh, C.-A., Taira, K.: Resolvent-analysis-based design of airfoil separation control. J. Fluid Mech. 867, 572–610 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Taira, K., Hemati, M.S., Brunton, S.L., Sun, Y., Duraisamy, K., Bagheri, S., Dawson, S.T.M., Yeh, C.-A.: Modal Analysis of Fluid Flows: Applications and Outlook. (2019). arXiv:1903.05750

  27. Deem, E.A., Cattafesta, L.N., Zhang, H., Rowley, C.W., Hemati, M., Cadieux, F., Mittal, R.: Identifying dynamic modes of separated flow subject to ZNMF-based control from surface pressure measurements. In: 47th AIAA Fluid Dynamics Conference, AIAA Paper, p. 3309 (2017)

  28. Hemati, M.S., Rowley, C.W., Deem, E.A., Cattafesta, L.N.: De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets. Theoret. Comput. Fluid Dyn. 31(4), 349–368 (2017)

    Google Scholar 

  29. Chen, K.K., Rowley, C.W.: H2 optimal actuator and sensor placement in the linearised complex Ginzburg–Landau system. J. Fluid Mech. 681, 241–260 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Chanekar, P.V., Chopra, N., Azarm, S.: Optimal actuator placement for linear systems with limited number of actuators. In: American Control Conference (ACC), pp. 334–339. IEEE (2017)

  31. Manohar, K., Brunton, B., Kutz, J., Brunton, S.: Data-driven sparse sensor placement for reconstruction: demonstrating the benefits of exploiting known patterns. IEEE Control Syst. Mag. 38(3), 63–86 (2018)

    MathSciNet  Google Scholar 

  32. Clark, E., Askham, T., Brunton, S.L., Kutz, J.N.: Greedy Sensor Placement with Cost Constraints. (2018). arXiv:1805.03717

  33. Saito, Y., Nonomura, T., Yamada, K., Asai, K., Sasaki, Y., Tsubakino, D.: Determinant-Based Fast Greedy Sensor Selection Algorithm. (2019). arXiv preprint arXiv:1911.08757

  34. Yamada, K., Saito, Y., Nankai, K., Nonomura, T., Asai, K., Tsubakino, D.: Fast Greedy Optimization of Sensor Selection in Measurement with Correlated Noise. (2019). arXiv preprint arXiv:1912.01776

  35. Yao, H., Hemati, M.: Advances in output feedback control of transient energy growth in a linearized channel flow. In: AIAA Paper p. 0882 (2019)

  36. Jeong, P.: Synthetic jet flow control of two-dimensional NACA 65(1)-412 airfoil flow with finite-time Lyapunov exponent analysis of Lagrangian coherent structures. Master’s thesis, San Diego State University, San Diego, CA (2016)

  37. Torres, R.: Experimental study of the use of synthetic jet actuators for flight control. Master’s thesis, San Diego State University, San Diego, CA (2014)

  38. Simpson, R.L.: Junction flows. Annu. Rev. Fluid Mech. 33, 415–433 (2001)

    MATH  Google Scholar 

  39. Haller, G.: Exact theory of unsteady separation for two-dimensional flows. J. Fluid Mech. 512, 257–311 (2004)

    MATH  Google Scholar 

  40. Klose, B.F., Serra, M., Jacobs, G.B.: The Kinematics of Lagrangian Flow Separation in External Aerodynamics. (2019). arXiv:1909.04129

  41. Kamphuis, M., Jacobs, G.B., Chen, K., Spedding, G., Hoeijmakers, H.: Actuation, pulse, effects, its, on separated Lagrangian coherent structures for flow over a cambered airfoil. In: AIAA Aerospace Sciences Meeting, p. 2255. AIAA (2018)

  42. Juang, J.-N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. 8(5), 620–627 (1985)

    MATH  Google Scholar 

  43. Flinois, T.L.B., Morgans, A.S.: Feedback control of unstable flows: a direct modelling approach using the Eigensystem Realisation Algorithm. J. Fluid Mech. 793, 41–78 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Ma, Z., Ahuja, S., Rowley, C.W.: Reduced-order models for control of fluids using the Eigensystem Realization Algorithm. Theoret. Comput. Fluid Dyn. 25, 233–247 (2011)

    MATH  Google Scholar 

  45. Toscano, R.: Structured Controllers for Uncertain Systems: A Stochastic Optimization Approach. Springer, London (2013)

    MATH  Google Scholar 

  46. Kreindler, E., Sarachik, P.: On the concepts of controllability and observability of linear systems. IEEE Trans. Autom. Control 9(2), 129–136 (1964)

    MathSciNet  Google Scholar 

  47. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, vol. 2. Wiley, New York (2007)

    MATH  Google Scholar 

  48. Zhou, K., Salomon, G., Wu, E.: Balanced realization and model reduction for unstable systems. Int. J. Robust Nonlinear Control 9, 183–198 (1999)

    MathSciNet  MATH  Google Scholar 

  49. Åström, K.J., Wittenmark, B.: Computer-Controlled Systems: Theory and Design. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  50. Vicario, F.: OKID as a General Approach to Linear and Bilinear System Identification. Columbia University, New York City (2014)

    Google Scholar 

  51. Juang, J.-N., Phan, M.Q., Horta, L.G., Longman, R.W.: Identification of observer/Kalman Filter markov parameters: theory and experiments. J. Guid. Control Dyn. 16(2), 320–329 (1993)

    MATH  Google Scholar 

  52. Nelson, D.A., Jacobs, G.B., Kopriva, D.A.: Effect of boundary representation on viscous, separated flows in a discontinuous-Galerkin Navier–Stokes solver. Theoret. Comput. Fluid Dyn. 30(4), 363–385 (2016)

    Google Scholar 

  53. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer, Berlin (2009)

    MATH  Google Scholar 

  54. Jacobs, G.B., Kopriva, D., Mashayek, F.: A comparison of outflow boundary conditions for the multidomain staggered-grid spectral method. Numer. Heat Transf. B Fundam. 44(3), 225–251 (2003)

    Google Scholar 

  55. Suzuki, T., Colonius, T., Pirozzoli, S.: Vortex shedding in a two-dimensional diffuser: theory and simulation of separation control by periodic mass injection. J. Fluid Mech. 520, 187–213 (2004)

    MATH  Google Scholar 

  56. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Tu, J., Rowley, C., Luchtenberg, D., Brunton, S., Kutz, J.: On dynamic mode decomposition: theory and algorithms. J. Comput. Dyn. 1, 391–421 (2014)

    MathSciNet  MATH  Google Scholar 

  59. Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15(1), 142–161 (2016)

    MathSciNet  MATH  Google Scholar 

  60. Dawson, S., Hemati, M., Williams, M., Rowley, C.: Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition. Exp. Fluids 57, 42 (2016)

    Google Scholar 

  61. Askham, T., Kutz, J.: Variable projection methods for an optimized dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 17(1), 380–416 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Nonomura, T., Shibata, H., Takaki, R.: Dynamic mode decomposition using a Kalman filter for parameter estimation. AIP Adv. 8(10), 105106 (2018)

    Google Scholar 

  63. Zhang, W., Wei, M.: Model order reduction using DMD modes and adjoint DMD modes. In: AIAA Paper, p. 3482 (2017)

  64. Brogan, W.L.: Modern Control Theory. Prentice-Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  65. Hamdan, A., Nayfeh, A.: Measures of modal controllability and observability for first-and second-order linear systems. J. Guid. Control Dyn. 12(3), 421–428 (1989)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under awards FA9550-16-1-0392, FA9550-17-1-0252, and FA9550-19-1-0034 monitored by Drs. Douglas R. Smith and Gregg Abate. The authors thank Dr. Kevin K. Chen for initial discussions related to optimal actuator selection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar S. Hemati.

Additional information

Communicated by Tim Colonius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, D., Klose, B., Jacobs, G.B. et al. Data-driven selection of actuators for optimal control of airfoil separation. Theor. Comput. Fluid Dyn. 34, 557–575 (2020). https://doi.org/10.1007/s00162-020-00526-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-020-00526-y

Keywords

Navigation