Skip to main content
Log in

Computational method for generalized fractional Benjamin–Bona–Mahony–Burgers equations arising from the propagation of water waves

  • Published:
Sādhanā Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this research, by utilizing the concept of the mixed Caputo fractional derivative and left-sided mixed Riemann–Liouville fractional integral, we approximate the solution of generalized fractional Benjamin–Bona–Mahony–Burgers equations (GF-BBMBEs). In addition, using Genocchi polynomial properties, we obtain a new formula to approximate the functions by Genocchi polynomials. In the process of computation, we discuss a method of obtaining the operational matrix of integration and pseudo-operational matrices of the fractional order of derivative. Also, an algorithm of obtaining the mixed fractional integral operational matrix is presented. Using the collocation method and matrices introduced, the proposed equations are converted to a system of nonlinear algebraic equations with unknown Genocchi coefficients. In addition, we discuss the upper bound of the error for the proposed method. Finally, we examine several problems to demonstrate the validity and applicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Eilenberger G 1983 Solitons. Berlin: Springer-Verlag

    MATH  Google Scholar 

  2. Whitham G 1974 Linear and nonlinear waves. New York: Wiley

    MATH  Google Scholar 

  3. Gray P and Scott S 1990 Chemical waves and instabilities. Oxford: Clarendon

    Google Scholar 

  4. Hasegawa A 1975 Nonlinear effects and plasma instabilities. Berlin: Springer-Verlag

    Book  Google Scholar 

  5. Meiss J and Horton W 1982 Fluctuation spectra of a drift wave soliton gas. Phys. Fluids. 25: 1838–1843

    Article  Google Scholar 

  6. Korteweg D and De Vries G 1895 XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 39: 422–443

    Article  Google Scholar 

  7. Benjamin T, Bona J and Mahony J 1972 Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. A 272(1220): 47–78

    Article  MathSciNet  Google Scholar 

  8. Byatt-Smith J 1971 The effect of laminar viscosity on the solution of the undular bore. J. Fluid Mech. 48: 33–40

    Article  MathSciNet  Google Scholar 

  9. Dutykh D 2009 Visco-potential free-surface flows and long wave modelling. Eur. J. Mech. B: Fluids 28: 430–443

    Article  MathSciNet  Google Scholar 

  10. Kakutani T and Matsuuchi K 1975 Effect of viscosity on long gravity waves. J. Phys. Soc. Jpn. 39(1): 237–246

    Article  MathSciNet  Google Scholar 

  11. Zhang H, Wei G and Gao Y 2002 On the general form of the Benjamin–Bona–Mahony equation in fluid mechanics. Czech. J. Phys. 52: 373–377

    Article  MathSciNet  Google Scholar 

  12. Kaya D 2004 A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation. Appl. Math. Comput. 149: 833–841

    MathSciNet  MATH  Google Scholar 

  13. Abdollahzadeh M, Ghanbarpour M, Hosseini A and Kashani S 2010 Exact travelling solutions for Benjamin–Bona–Mahony–Burgers equations by (G’/G)-expansion method. Int. J. Appl. Math. Comput. 3: 70–76

    Google Scholar 

  14. Al-Khaled K, Momani S and Alawneh A 2005 Approximate wave solutions for generalized Benjamin–Bona–Mahony–Burgers equations. Appl. Math. Comput. 171: 281–292

    MathSciNet  MATH  Google Scholar 

  15. Mekki A and Ali M 2013 Numerical simulation of Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equations using finite difference method. Appl. Math. Comput. 219: 11214–11222

    MathSciNet  MATH  Google Scholar 

  16. Dehghan M, Abbaszadeh M and Mohebbi A 2014 The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions. Comput. Math. Appl. 68: 212–237

    Article  MathSciNet  Google Scholar 

  17. Noor M, Noor K, Waheed A and Al-Said E 2011 Some new solitonary solutions of the modified Benjamin–Bona–Mahony equation. Comput. Math. Appl. 62: 2126–2131

    Article  MathSciNet  Google Scholar 

  18. Wazwaz A and Triki H 2011 Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients. Commun. Nonlinear Sci. Numer. Simul. 16: 1122–1126

    Article  MathSciNet  Google Scholar 

  19. Singh K, Gupta R and Kumar S 2011 Benjamin–Bona–Mahony (BBM) equation with variable coefficients: similarity reductions and Painleve analysis. Appl. Math. Comput. 217: 7021–7027

    MathSciNet  MATH  Google Scholar 

  20. Yin H and Hu J 2010 Exponential decay rate of solutions toward traveling waves for the Cauchy problem of generalized Benjamin–Bona–Mahony–Burgers equations. Nonlin. Anal.: Theor. 73: 1729–1738

    Article  MathSciNet  Google Scholar 

  21. Tari H and Ganji D 2007 Approximate explicit solutions of nonlinear BBMB equations by He’s methods and comparison with the exact solution. Phys. Lett. A 367: 95–101

    Article  Google Scholar 

  22. Achouri T, Khiari N and Omrani K 2006 On the convergence of difference schemes for the Benjamin–Bona–Mahony (BBM) equation. Appl. Math. Comput. 182: 999–1005

    MathSciNet  MATH  Google Scholar 

  23. Abbasbandy S and Shirzadi A 2010 The first integral method for modified Benjamin–Bona–Mahony equation. Commun. Nonlin. Sci. Numer. Simul. 15: 1759–1764

    Article  MathSciNet  Google Scholar 

  24. Araci S, Acikgoz M and Aen E 2013 On the extended Kim’s p-adic q-deformed fermionic integrals in the p-adic integer ring. J. Number Theory 133: 3348–3361

  25. Bayad A and Kim T 2010 Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. 20: 247–253

    MathSciNet  MATH  Google Scholar 

  26. Araci S 2012 Novel identities for q-Genocchi numbers and polynomials. J. Funct. Space Appl. 2012

  27. Srivastava H, Kurt B and Simsek Y 2012 Some families of Genocchi type polynomials and their interpolation functions. Integr. Transf. Spec. F. 23: 919–938

    Article  MathSciNet  Google Scholar 

  28. Araci S, Acikgoz M, Bagdasaryan A and Sen E 2013 The Legendre polynomials associated with Bernoulli, Euler, Hermite and Bernstein polynomials. arXiv preprint arXiv: 1312.7838

  29. Araci S 2014 Novel identities involving Genocchi numbers and polynomials arising from applications of umbral calculus. Appl. Math. Comput. 233: 599–607

    MathSciNet  MATH  Google Scholar 

  30. Lim D 2016 Some identities of degenerate Genocchi polynomials. Bull. Korean Math. Soc. 53: 569–579

    Article  MathSciNet  Google Scholar 

  31. Isah A and Phang C 2018 Operational matrix based on Genocchi polynomials for solution of delay differential equations. Ain Shams Eng. J. 9: 2123–2128

    Article  Google Scholar 

  32. Isah A and Phang C 2019 New operational matrix of derivative for solving non-linear fractional differential equations via Genocchi polynomials. J. King Saud. Univ. Sci. 31: 1–7

    Article  Google Scholar 

  33. Loh J R, Phang C and Isah A 2017 New operational matrix via Genocchi polynomials for solving Fredholm–Volterra fractional integro-differential equations. Adv. Math. Phys. 2017, Article ID 3821870, 12 pp.

  34. Phang C, Ismail N, Isah A and Loh J 2018 A new efficient numerical scheme for solving fractional optimal control problems via a Genocchi operational matrix of integration. J. Vib. Control 24: 3036–3048

    Article  MathSciNet  Google Scholar 

  35. Podlubny I 1999 Fractional differential equations. In: Mathematics in Science and Engineering, vol. 198

  36. Agheli B and Firozja M A 2019 Approximate solution for high-order fractional integro-differential equations via trigonometric basic functions. Sadhana 44: 77

    Article  MathSciNet  Google Scholar 

  37. Vityuk A and Golushkov A 2004 Existence of solutions of systems of partial differential equations of fractional order. Nonlin. Oscil. 7: 318–325

    Article  MathSciNet  Google Scholar 

  38. Dehestani H, Ordokhani Y and Razzaghi M 2019 Application of the modified operational matrices in multiterm variable-order time-fractional partial differential equations. Math. Meth. Appl. Sci. 1–18

  39. Dehestani H, Ordokhani Y and Razzaghi M 2019 Hybrid functions for numerical solution of fractional Fredholm–Volterra functional integro-differential equations with proportional delays. Int. J. Numer. Model. 42: 7296–7313

    MATH  Google Scholar 

  40. Isah A and Phang C 2016 Genocchi wavelet-like operational matrix and its application for solving non-linear fractional differential equations. Open Phys. 14: 463–472

    Article  Google Scholar 

  41. Dehestani H, Ordokhani Y and Razzaghi M 2019 A numerical technique for solving various kinds of fractional partial differential equations via Genocchi hybrid functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Madr. 113: 3297–3321

    MathSciNet  MATH  Google Scholar 

  42. Loh J R and Phang C 2018 A new numerical scheme for solving system of Volterra integro-differential equation. Alex. Eng. J. 57: 1117–1124

    Article  Google Scholar 

  43. Dehestani H, Ordokhani Y and Razzaghi M 2018 Fractional-order Legendre–Laguerre functions and their applications in fractional partial differential equations. Appl. Math. Comput. 336: 433–453

    MathSciNet  MATH  Google Scholar 

  44. Singh I and Kumar S 2017 Haar wavelet methods for numerical solutions of Harry Dym (HD), BBM Burgers’ and 2D diffusion equations. Bull. Braz. Math. Soc. New Ser. 49: 1–26

    Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the anonymous referees for valuable suggestions that improved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Ordokhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehestani, H., Ordokhani, Y. & Razzaghi, M. Computational method for generalized fractional Benjamin–Bona–Mahony–Burgers equations arising from the propagation of water waves. Sādhanā 45, 95 (2020). https://doi.org/10.1007/s12046-020-1302-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-020-1302-y

Keywords

Navigation