Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect

Abstract

The photonic spin Hall effect, a deep subdiffraction-limited shift between the opposite spin components of light, emerges when light undergoes an evolution of polarization or trajectory that induces the geometric phase. Here, we study a stochastic photonic spin Hall effect arising from space-variant Berry–Zak phases, which are generated by disordered magneto-optical effects. This spin shift is observed from a spatially bounded lattice of ferromagnetic meta-atoms displaying nanoscale disorders. A random variation of the radii of the meta-atoms induces the nanoscale fluctuation. The standard deviation of the probability distribution of the spin shifts is proportional to the fluctuation of the meta-atoms. This enables us to detect a five-nanometre fluctuation by measuring the probability distribution of the spin shifts via weak measurements. Our approach may be used for sensing deep-subwavelength disorders by actively breaking the photonic spin symmetry and may enable investigations of fluctuation effects in magnetic nanosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual illustration of a PSHE from a disordered ferromagnetic metasurface.
Fig. 2: The Kerr rotation, Berry–Zak phase and PSHE from a disordered ferromagnetic metasurface.
Fig. 3: Observation of the PSHE from the nanoscale fluctuation of ferromagnetic meta-atoms.
Fig. 4: The stochastic properties of PSHEs from disordered metasurfaces.

Similar content being viewed by others

Data availability

The data for Figs. 2–4 are available as source data. Other data that support the conclusions of this study are available from the corresponding author upon reasonable request.

References

  1. Wiersma, D. S. Disordered photonics. Nat. Photon. 7, 188–196 (2013).

    Article  CAS  Google Scholar 

  2. Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photon. 7, 197–204 (2013).

    Article  CAS  Google Scholar 

  3. Stockman, M. I. Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters. Phys. Rev. E 56, 6494–6507 (1997).

    Article  CAS  Google Scholar 

  4. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    Article  Google Scholar 

  5. Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nat. Photon. 6, 581–585 (2012).

    Article  CAS  Google Scholar 

  6. Levi, L. et al. Disorder-enhanced transport in photonic quasicrystals. Science 332, 1541–1544 (2011).

    Article  CAS  Google Scholar 

  7. Park, J. H. et al. Subwavelength light focusing using random nanoparticles. Nat. Photon. 7, 454–458 (2013).

    Article  CAS  Google Scholar 

  8. Jang, M. et al. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photon. 12, 84–90 (2018).

    Article  CAS  Google Scholar 

  9. Sheinfux, H. H. et al. Observation of Anderson localization in disordered nanophotonic structures. Science 356, 953–956 (2017).

    Article  CAS  Google Scholar 

  10. Yuan, G. & Zheludev, N. I. Detecting nanometric displacements with optical ruler metrology. Science 364, 771–775 (2019).

    Article  CAS  Google Scholar 

  11. Maguid, E. et al. Disorder-induced optical transition from spin Hall to random Rashba effect. Science 358, 1411–1415 (2017).

    Article  CAS  Google Scholar 

  12. Pors, A., Ding, F., Chen, Y., Radko, I. P. & Bozhevolnyi, S. I. Random-phase metasurfaces at optical wavelengths. Sci. Rep. 6, 28448 (2016).

    Article  CAS  Google Scholar 

  13. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  CAS  Google Scholar 

  14. Minovich, A. E. et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev. 9, 195–213 (2015).

    Article  Google Scholar 

  15. Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2015).

    Article  CAS  Google Scholar 

  16. Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).

    Article  CAS  Google Scholar 

  17. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  CAS  Google Scholar 

  18. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  CAS  Google Scholar 

  19. Berry, M. V. Quantal phase factors accompanying adiabatic. Proc. R. Soc. A 392, 45–57 (1984).

    Google Scholar 

  20. Pancharatnam, S. Generalized theory of interference, and its application. Proc. Ind. Acad. Sci. A 44, 247–262 (1956).

    Article  Google Scholar 

  21. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

    Google Scholar 

  22. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin-orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  CAS  Google Scholar 

  23. Jungwirth, T., Wunderlich, J. & Olejník, K. Spin Hall effect devices. Nat. Mater. 11, 382–390 (2012).

    Article  CAS  Google Scholar 

  24. Le Sage, D. et al. Optical magnetic imaging of living cells. Nature 496, 486–489 (2013).

    Article  CAS  Google Scholar 

  25. Spitzer, F. et al. Routing the emission of a near-surface light source by a magnetic field. Nat. Phys. 14, 1043–1048 (2018).

    Article  CAS  Google Scholar 

  26. Rikken, G. L. J. A. & van Tiggelen, B. A. Observation of magnetically induced transverse diffusion of light. Nature 381, 54–55 (1996).

    Article  CAS  Google Scholar 

  27. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  28. Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).

    Article  CAS  Google Scholar 

  29. Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015).

    Article  CAS  Google Scholar 

  30. Bliokh, K. Y., Niv, A., Kleiner, V. & Hasman, E. Geometrodynamics of spinning light. Nat. Photon. 2, 748–753 (2008).

    Article  CAS  Google Scholar 

  31. Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

    Article  CAS  Google Scholar 

  32. Korger, J. et al. Observation of the geometric spin Hall effect of light. Phys. Rev. Lett. 112, 113902 (2014).

    Article  CAS  Google Scholar 

  33. Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 319, 787–790 (2008).

    Article  CAS  Google Scholar 

  34. Bliokh, K. Y., Gorodetski, Y., Kleiner, V. & Hasman, E. Coriolis effect in optics: unified geometric phase and spin-Hall effect. Phys. Rev. Lett. 101, 030404 (2008).

    Article  CAS  Google Scholar 

  35. Zak, J. Geometric phase in magneto-optic Faraday rotation. Phys. Lett. A 154, 471–474 (1991).

    Article  Google Scholar 

  36. Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988).

    Article  CAS  Google Scholar 

  37. Temnov, V. V. et al. Active magneto-plasmonics in hybrid metal–ferromagnet structures. Nat. Photon. 4, 107–111 (2010).

    Article  CAS  Google Scholar 

  38. Sepúlveda, B., González-Díaz, J. B., García-Martín, A., Lechuga, L. M. & Armelles, G. Plasmon-induced magneto-optical activity in nanosized gold disks. Phys. Rev. Lett. 104, 147401 (2010).

    Article  CAS  Google Scholar 

  39. Belotelov, V. I. et al. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat. Nanotechnol. 6, 370–376 (2011).

    Article  CAS  Google Scholar 

  40. Guimarães, A. P. Principles of Nanomagnetism (Springer, 2009).

  41. Lee, M., Callard, S., Seassal, C. & Jeon, H. Taming of random lasers. Nat. Photon. 13, 445–448 (2019).

    Article  CAS  Google Scholar 

  42. Berry, M. V. & Popescu, S. Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A Math. Gen. 39, 6965–6977 (2006).

    Article  Google Scholar 

  43. Rogers, E. T. F. et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012).

    Article  CAS  Google Scholar 

  44. Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article  CAS  Google Scholar 

  45. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article  CAS  Google Scholar 

  46. Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

    Article  CAS  Google Scholar 

  47. Gilbert, I. et al. Emergent reduced dimensionality by vertex frustration in artificial spin ice. Nat. Phys. 12, 162–165 (2016).

    Article  CAS  Google Scholar 

  48. Canals, B. et al. Fragmentation of magnetism in artificial kagome dipolar spin ice. Nat. Commun. 7, 11446 (2016).

    Article  CAS  Google Scholar 

  49. Östman, E. et al. Interaction modifiers in artificial spin ices. Nat. Phys. 14, 375–379 (2018).

    Article  CAS  Google Scholar 

  50. Riek, C. et al. Direct sampling of electric-field vacuum fluctuations. Science 350, 420–423 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Israel Science Foundation (ISF); the US Air Force Office of Scientific Research (FA9550-18-1-0208) through their programme on Photonic Metamaterials; the Israel Ministry of Science, Technology and Space; the United States−Israel Binational Science Foundation (BSF); and, in part, the Technion via an Aly Kaufman Fellowship. The fabrication was performed at the Micro-Nano Fabrication & Printing Unit (MNF&PU), Technion.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to this work.

Corresponding author

Correspondence to Erez Hasman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Vassilios Kapaklis, Francisco Rodríguez-Fortuño and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–10 and refs. 1–12.

Source data

Source Data Fig. 2

Source data for the simulation results of the Kerr effect and photonic spin Hall effect from disordered Kerr effects.

Source Data Fig. 3

Source data for the experimental results of weak measurements.

Source Data Fig. 4

Source data for the calculated and experimental results for stochastic photonic spin Hall effect.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Rong, K., Maguid, E. et al. Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect. Nat. Nanotechnol. 15, 450–456 (2020). https://doi.org/10.1038/s41565-020-0670-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-0670-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing