Skip to main content
Log in

Oxygen Electroreduction on the Anthraquinone-Modified Thin-Film Carbon–Polymer Composite in Alkaline Solution

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Technical carbon CH210 was processed by chemical reduction of the diazo derivative of anthraquinone for surface modification. The presence of anthraquinone groups on the carbon surface was confirmed by attenuated total internal reflection (ATR) IR spectroscopy. Carbon with the anthraquinone-modified surface was deposited on a glassy carbon support using a polymer binder. The behavior of the thus obtained catalyst in oxygen electroreduction in an alkaline medium was studied by the rotating disk electrode method. The kinetic characteristics of the reaction were determined: half-wave potential, limiting current, number of electrons, Tafel slope, exchange current, and charge transfer coefficient. Hydrogen peroxide is formed on the surface of the carbon–polymer composite at higher positive potentials than on technical carbon and glassy carbon electrodes. Therefore, the proposed material can be used as an effective electrocatalyst for this reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Sosnovskii, G.N., Sosnovskaya, N.G., Kovalyuk, E.N., and Sultanova, V.I., Osnovy elektrokhimicheskoi tekhnologii (Fundamentals of Chemical Technology), Angarsk: AGTA, 2005.

  2. Keita, B. and Nadjo, L., Catalytic synthesis of hydrogen peroxide: an attractive electrochemical and photoelectrochemical route to the reduction of oxygen, J. Electroanal. Chem., 1983, vol. 145, p. 431.

    Article  CAS  Google Scholar 

  3. Samanta, C., Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process, Appl. Catal., A, 2008, vol. 350, p. 133.

  4. Campos, M., Siriwatcharapiboon, W., Potter, R.J., and Horswell, S.L., Selectivity of cobalt-based catalysts towards hydrogen peroxide formation during the reduction of oxygen, Catal. Today, 2013, vol. 202, p. 135.

    Article  CAS  Google Scholar 

  5. Lobyntseva, E., Kallio, T., Alexeyeva, N., Tammeveski, K., and Kontturi, K., Electrochemical synthesis of hydrogen peroxide: Rotating disk electrode and fuel cell studies, Electrochim. Acta, 2007, vol. 52, p. 7262.

    Article  CAS  Google Scholar 

  6. Mirkhalaf, F., Tammeveski, K., and Schiffrin, D.J., Substituent effects on the electrocatalytic reduction of oxygen on quinone-modified glassy carbon electrodes, Phys. Chem. Chem. Phys., 2004, vol. 6, p. 1321.

    Article  CAS  Google Scholar 

  7. Kinetika slozhnykh elektrokhimicheskikh reaktsii (Kinetics of Complex Electrochemical Reactions), Kazarinov, V.E., Ed., Moscow: Nauka, 1981.

    Google Scholar 

  8. Assumpção, M.H.M.T., De Souza, R.F.B., Rascio, D.C., Silva, J.C.M., Calegaro, M.L., Gaubeur, I., Paixão, T.R.L.C., Hammer, P., Lanza, M.R.V., and Santos, M.C., A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports, Carbon, 2011, vol. 49, p. 2842.

    Article  Google Scholar 

  9. Jeyabharathi, C., Hasse, U., Ahrens, P., and Sholz, F., Oxygen electroreduction on polycrystalline gold electrodes and on gold nanoparticle-modified glassy carbon electrodes, Solid State Electrochem., 2014, vol. 18, p. 3299.

    Article  CAS  Google Scholar 

  10. Guterman, V.E., Pustovaya, L.E., Guterman, A.V., and Vysochina, L.L., Borohydride synthesis of the Ptx‒Ni/C electrocatalysts and investigation of their activity in the oxygen electroreduction reaction, Russ. J. Electrochem., 2007, vol. 43, p. 1091.

    Article  CAS  Google Scholar 

  11. Gudko, O.E., Smirnova, N.V., Lastovina, T.A., and Guterman, V.E., Binary Pt–Me/C nanocatalysts: structure and catalytic properties toward the oxygen reduction reaction, Nanotechnol. Russ., 2009, vol. 4, p. 309.

    Article  Google Scholar 

  12. Tripachev, O.V. and Tarasevich, M.R., Effect of size in oxygen electroreduction on gold over a wide range of pH, Russ. J. Phys. Chem. A., 2013, vol. 87, p. 820.

    Article  CAS  Google Scholar 

  13. Brigadnova, N.S., Potapova, G.F., Davydov, R.I., Kasatkin, E.V., Mantuzov, A.V., and Kuznetsov, E.V., Modified graphitized carbon fiber materials for electrosynthesis of hydrogen peroxide, Izv. Vyssh. Uchebn. Zaved.,Khim. Khim. Tekhnol., 2013, vol. 56, no. 5, p. 19.

    CAS  Google Scholar 

  14. Kornienko, G.V., Kolyagin, G.A., Kornienko, V.L., and Parfenov, V.A., Graphitized carbon materials for electrosynthesis of H2O2 from O2 in gas-diffusion electrodes, Russ. J. Electrochem., 2016, vol. 52, p. 983.

    Article  CAS  Google Scholar 

  15. Yi, Y., Wang, L., Li, G., and Guo, H., A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method, Catal. Sci. Technol., 2016, vol. 6, p. 1593.

    Article  CAS  Google Scholar 

  16. Shen, Y., Traube, M., and Wittstock, G., Detection of hydrogen peroxide produced during electrochemical oxygen reduction using scanning electrochemical microscopy, Anal. Chem., 2008, vol. 80, p. 750.

    Article  CAS  Google Scholar 

  17. Šljukic, B., Banks, C.E., Mentus, S., and Compton, R.G., Modification of carbon electrodes for oxygen reduction and hydrogen peroxide formation: The search for stable and efficient sonoelectrocatalysts, Phys. Chem. Chem. Phys., 2004, vol. 6, p. 992.

    Article  Google Scholar 

  18. Vaik, K., Sarapuu, A., Tammeveski, K., Mirkhalaf, F., and Schiffrin, D.J., Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH, J. Electroanal. Chem., 2004, vol. 564, p. 159.

    Article  CAS  Google Scholar 

  19. Tammeveski, K., Kontturi, K., Nichols, R.J., Potter, R.J., and Schiffrin, D.J., Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes, J. Electroanal. Chem., 2001, vol. 515, p. 101.

    Article  CAS  Google Scholar 

  20. Sarapuu, A., Helstein, K., Schiffrin, D.J., and Tammeveski, K., Kinetics of oxygen reduction on quinone-modified HOPG and BDD electrodes in alkaline solution, Electrochem. Solid-State Lett., 2005, vol. 8, p. E30.

    Article  CAS  Google Scholar 

  21. Potapova, G.F., Kasatkin, E.V., Panesh, A.M., Lozovskii, A.D., and Kozlova, N.V., Hydrogen peroxide electrosynthesis on nonplatinum materials, Russ. J. Electrochem., 2004, vol. 40, p. 1193.

    Article  CAS  Google Scholar 

  22. Pognon, G., Brousse, T., and Bélanger, D., Effect of molecular grafting on the pore size distribution and the double layer capacitance of activated carbon for electrochemical double layer capacitors, Carbon, 2011, vol. 49, p. 1340.

    Article  CAS  Google Scholar 

  23. Tarasevich, M.R., Beketaeva, L.A., Efremov, B.N., Zagudaeva, N.M., Kuznetsova, L.N., Rybalka, K.V., and Sosenkin, V.E., Electrochemical properties of carbon black AD-100 and AD-100 promoted with pyropolymer of cobalt tetra(p-methoxyphenyl)porphyrin, Russ. J. Electrochem., 2004, vol. 40, p. 542.

    Article  CAS  Google Scholar 

  24. Kolyagin, G.A. and Kornienko, V.L., The effect of carbon black mixture composition on the structural and electrochemical characteristics of gas diffusion electrodes for electrosynthesis of hydrogen peroxide, Russ. J. Electrochem., 2016, vol. 52, p. 185.

    Article  CAS  Google Scholar 

  25. Wang, B., Recent development of non-platinum catalysts for oxygen reduction reaction, J. Power Sources, 2005, vol. 152, p. 1.

    Article  CAS  Google Scholar 

  26. Guerrini, E. and Trasatti, S., Recent developments in understanding factors of electrocatalysis, Russ. J. Electrochem., 2006, vol. 42, p. 1017.

    Article  CAS  Google Scholar 

  27. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya 2006.

    Google Scholar 

  28. Huissoud A. and Tissot P., Electrochemical reduction of 2-ethy1-9, l0-anthraquinone (EAQ) and mediated formation of hydrogen peroxide in a two-phase medium, part I: Electrochemical behaviour of EAQ on a vitreous carbon rotating disc electrode (RDE) in the two-phase medium, Appl. Electrochem., 1999, vol. 29, p. 11.

    Article  CAS  Google Scholar 

  29. Appel, M. and Appleby, A.J., A ring-disk electrode study of the reduction of oxygen on active carbon in alkaline solution, Electrochim. Acta, 1978, vol. 23, p. 1243.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Multiaccess Center of Scientific Equipment of Voronezh State University for performing the microscopic measurements.

Funding

This study was financially supported by the Russian Foundation for Basic Research (grant no. 17-08-00426_а).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kravchenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaika, M.Y., Volkov, V.V., Kravchenko, T.A. et al. Oxygen Electroreduction on the Anthraquinone-Modified Thin-Film Carbon–Polymer Composite in Alkaline Solution. Russ J Electrochem 55, 1284–1291 (2019). https://doi.org/10.1134/S102319351911003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351911003X

Keywords:

Navigation