Skip to main content
Log in

Effect of Cl and \({\text{SO}}_{4}^{{2 - }}\) Ions on Electrodeposition of Cobalt from Acidic Gluconate Solutions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A role of anions in potentiostatic electrodeposition of cobalt from acidic gluconate solutions was investigated. Equilibrium distribution of soluble species in the solutions was calculated and compared with absorption spectra. Cyclic voltammetry and potentiostatic measurements confirmed that cathodic process was inhibited mainly by free sulfate ions. Improved buffer capacity of gluconate baths by addition of sulfate ions protected against contamination of metal deposits by products of cobalt salt hydrolysis. Mathematical models of metal nucleation were tested indicating progressive mode responsible for the formation of the metal phase. Diffusion coefficients of cobalt species were also calculated using various approaches. Thickness, morphology and structure of cobalt deposits as well as cathodic current efficiency were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Garciá-Torres, L., Gómez, E., and Vallés, E., Modulation of magnetic and structural properties of cobalt thin films by means of electrodeposition, J. Appl. Electrochem., 2009, vol. 39, p. 233.

    Article  CAS  Google Scholar 

  2. Szmaja, W., Kozłowski, W., Polański, K., Balcerski, J., Cichomski, M., Grobelny, J., Zieliński, M., and Miękoś, E., Investigation of trick cobalt films electrodeposited on gold substrates, Chem. Phys. Lett., 2012, vol. 542, p. 117.

    Article  CAS  Google Scholar 

  3. Caffarena, V.R., Guimaraes, A.P., Folly, W.S.D., Silva, E.M., and Capitaneo, J.L., Magnetic behavior of electrodeposited cobalt nanowires using different electrolytic bath acidities, Mat. Chem. Phys., 2008, vol. 107, p. 297.

    Article  CAS  Google Scholar 

  4. Ezhilselvi, V., Seenivasan, H., Bera, P., and Anandan, C., Characterization and corrosion behavior of Co and Co‒P coatings electrodeposited from chloride bath, RSC Adv., 2014, vol. 4, p. 46293.

    Article  CAS  Google Scholar 

  5. Amadeh, A. and Ebadpour, R., Effect of cobalt content on wear and corrosion behaviors of electrodeposited Ni–Co/WC nano-composite coatings, J. Nanosci. Nanotechnol., 2013, vol. 13, p. 1360.

    Article  CAS  PubMed  Google Scholar 

  6. Seenivasan, H., Bera, P., Balaraju, J.N., and Rajam, K.S., XPS characterization and microhardness of heat treated Co–W coatings electrodeposited with gluconate bath, Adv. Sci. Foc., 2013, vol. 1, no. 3, p. 262.

    Article  Google Scholar 

  7. Cui, C.Q., Jiang, S.P., and Tseung, A.C.C., XPS characterization and microhardness of heat treated Co–W coatings electrodeposited with gluconate bath, J. Electrochem. Soc., 1990, vol. 137, no. 11, p. 3418.

    Article  CAS  Google Scholar 

  8. Kongstein, O.E., Haareberg, G.M., and Thonstad, J., Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: the influence of current density, pH and temperature, J. Appl. Electrochem., 2007, vol. 37, p. 669.

    Article  CAS  Google Scholar 

  9. Matsushima, J.T., Trivinho-Strixino, F., and Pereira, E.C., Investigation of cobalt deposition using the electrochemical quartz microbalance, Electrochim. Acta, 2006, vol. 51, p. 1960.

    Article  CAS  Google Scholar 

  10. Flis-Kabulska, I., Electrodeposition of cobalt on gold during voltammetric cycling, J. Appl. Electrochem., 2006, vol. 36, p. 131.

    Article  CAS  Google Scholar 

  11. Santos, J.S., Matos, R., Trivinho-Strixino, F., and Pereira, E.C., Effect of temperature on Co electrodeposition in the presence of boric acid, Electrochim. Acta, 2007, vol. 53, p. 644.

    Article  CAS  Google Scholar 

  12. Kongstein, O.E., Haareberg, G.M., and Thonstad, J., Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part II: the influence of chloride and sulphate concentrations, J. Appl. Electrochem., 2007, vol. 37, p. 675.

    Article  CAS  Google Scholar 

  13. Mendoza-Huizar, L.H. and Rios-Reyes, C.H., Cobalt electrodeposition onto polycrystalline gold from ammoniacal solutions, Cent. Eur. J. Chem., 2013, vol. 11, no. 8, p. 1381.

    CAS  Google Scholar 

  14. Grujicic, D. and Pesic, B., Electrochemical and AFM study of cobalt nucleation mechanisms on glassy carbon from ammonium sulfate solutions, Electrochim. Acta, 2004, vol. 49, p. 4719.

    Article  CAS  Google Scholar 

  15. Frank, A.C. and Sumodjo, P.T.A., Electrodeposition of cobalt from citrate containing baths, Electrochim. Acta, 2014, vol. 132, p. 75.

    Article  CAS  Google Scholar 

  16. El Rehim, S.S.A., Ibrahim, M.A.M., and Dankeria, M.M., Electrodeposition of cobalt from gluconate electrolyte, J. Appl. Electrochem., 2002, vol. 32, p. 1019.

    Article  Google Scholar 

  17. Ibrahim, M.A.M. and Al Radadi, R.M., Nanocrystalline cobalt coatings on copper substrates by electrodeposition from complexing acidic glycine baths, Mater. Chem. Phys., 2015, vol. 151, p. 222.

    Article  CAS  Google Scholar 

  18. Saha, S., Sultana, S., Islam, M.M., Rahman, M.M., Mollah, M.Y.A., and Susan, M.A.B.H., Electrodeposition of cobalt with tunable morphology from reverse micellar solution, Ionics, 2014, vol. 20, p. 1175.

    Article  CAS  Google Scholar 

  19. Patnaik, P., Padhy, S.K., Tripathy, B.C., Bhattacharya, I.N., and Paramguru, R.K., Electrodeposition of cobalt from aqueous sulphate solutions in the presence of tetra ethyl ammonium bromide, Trans. Nonferr. Met. Soc. China, 2015, vol. 25, p. 2047.

    Article  CAS  Google Scholar 

  20. Patnaik, P., Tripathy, B.C., Bhattacharya, I.N., Paramguru, R.K., and Mishra, B.K., Effect of tetra propyl ammonium bromide during cobalt electrodeposition from acidic sulfate solutions, Metall. Mater. Trans. B, 2015, vol. 46, p. 1252.

    Article  CAS  Google Scholar 

  21. Matsushima, H., Ispas, A., Bund, A., Plieth, W., and Fukunaka, Y., Magnetic field effects on microstructural variation of electrodeposited cobalt films, J. Solid State Electrochem., 2007, vol. 11, p. 737.

    Article  CAS  Google Scholar 

  22. Krause, A., Uhlemann, M., Gebert, A., and Schultz, L., A study of nucleation, growth, texture ad phase formation of electrodeposited cobalt layers and the influence of magnetic fields, Thin Solid Film, 2006, vol. 515, p. 1694.

    Article  CAS  Google Scholar 

  23. Mendoza-Huizar, L.H., Robles, J., and Palomar-Pardavé, M., Nucleation and growth of cobalt onto different substrates. Part I. Underpotential deposition onto a gold electrode, J. Electroanal. Chem., 2002, vol. 521, p. 95.

    Article  CAS  Google Scholar 

  24. Palomar-Pardavé, M., Scharifker, B.R., Arce, E.M., and Romero-Romo, M., Nucleation and diffusion-controlled growth of electroactive centers. Reduction of protons during cobalt electrodeposition, Electrochim. Acta, 2005, vol. 50, p. 4736.

    Article  CAS  Google Scholar 

  25. Correira, A.N., Machado, S.A.S., and Avaca, L.A., Direct observation of overlapping of growth centers in Ni and Co electrocrystallization using atomic force microscopy, J. Electroanal. Chem., 2000, vol. 488, p. 110.

    Article  Google Scholar 

  26. Vicenzo, A. and Cavalotti, P.L., Growth modes of electrodeposited cobalt, Electrochim. Acta, 2004, vol. 49, p. 4079.

    Article  CAS  Google Scholar 

  27. Rios-Reyes, C.H., Granados-Neri, M., and Mendoza-Huizar, L.H., Kinetic study of the cobalt electrodeposition onto glassy carbon electrode from ammonium sulfate solutions, Quim. Nova, 2009, vol. 32, no. 9, p. 2382.

    Article  CAS  Google Scholar 

  28. Sahari, A., Azizi, A., Fenineche, N., Schmerber, G., and Dinia, A., Electrochemical study of cobalt nucleation mechanisms on different metallic substrates, Mater. Chem. Phys., 2008, vol. 108, p. 345.

    Article  CAS  Google Scholar 

  29. Floate, S., Hyde, M., and Compton, R.G., Electrochemical and AFM studies of the electrodeposition of cobalt on glassy carbon: an analysis of the effect of ultrasound, J. Electroanal. Chem., 2002, vol. 532, p. 49.

    Article  Google Scholar 

  30. Khelladi, M.R., Mentar, L., Boubatra, M., Azizi, A., and Kahoul, A., Early stages of cobalt electrodeposition on FTO and n-type Si substrates in sulfate medium, Mater. Chem. Phys., 2010, vol. 122, p. 449.

    Article  CAS  Google Scholar 

  31. Mishra, K.G., Singh, P., and Muir, D., Nucleation during electrocrystallization of cobalt on glassy carbon (GC), J. Appl. Chem., 2002, vol. 32, p. 1391.

    CAS  Google Scholar 

  32. Soto, A.B., Arce, E.M., Palomar-Pardavé, M., and Gonzalez, I., Electrochemical nucleation of cobalt on glassy carbon electrode from ammonium chloride solutions, Electrochim. Acta, 1996, vol. 41, no. 6, p. 2647.

    Article  CAS  Google Scholar 

  33. Manhabosco, T.M., Englert, G., and Müller, I.L., Characterization of cobalt thin films electrodeposition onto silicon with two different resistivities, Surf. Coat. Technol., 2006, vol. 200, p. 5203.

    Article  CAS  Google Scholar 

  34. Sharifker, B.R. and Hills, G., Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 1983, vol. 28, no. 7, p. 879.

    Article  Google Scholar 

  35. Rudnik, E., Wojnicki, M., and Włoch, G., Effect of gluconate addition on the electrodeposition of nickel from acidic baths, Surf. Coat. Technol., 2012, vol. 207, p. 375.

    Article  CAS  Google Scholar 

  36. Rudnik, E., Effect of anions on the electrodeposition of tin from acidic gluconate baths, Ionics, 2013, vol. 19, no. 7, p. 1047.

    Article  CAS  Google Scholar 

  37. Rudnik, E., Effect of gluconate ions on electroreduction phenomena during manganese deposition on glassy carbon in acidic chloride and sulfate solutions, J. Electroanal. Chem., 2015, vol. 741, p. 20.

    Article  CAS  Google Scholar 

  38. Rudnik, E., The influence of sulfate ions on the electrodeposition of Ni–Sn alloys from acidic chloride-gluconate baths, J. Electroanal. Chem., 2014, vol. 726, p. 97.

    Article  CAS  Google Scholar 

  39. Rudnik, E. and Wloch, G., The influence of sodium gluconate on nickel and manganese codeposition from acidic chloride-sulfate baths, Ionics, 2014, vol. 20, no. 12, p. 1747.

    Article  CAS  Google Scholar 

  40. The UPAC stability constants database, Academic Software and IUMAC, 1992–2000.

  41. Wagemann, R., Thermodynamic data base for the aquatic chemical speciation software package MACS80 (Version 5/1990-VAX and MS-DOS). 3rd ed., Can. Tech. Rep. Fish. Aquat. Sci., 1991.

    Google Scholar 

  42. Lee, M-S. and Oh, Y-J., Estimation of thermodynamic properties and ionic equilibria of cobalt chloride solution at 298 K, Mater. Trans., 2004, vol. 45, no. 4, p. 1317.

    Article  CAS  Google Scholar 

  43. Escandar, G.M., Sala, L.F., and Sierra, M.G., Complexes of cobalt(II) and nickel(II) with D-aldonic and D-alduronic acids in aqueous solution, Polyhed., 1994, vol. 13, no. 1, p. 143.

    Article  CAS  Google Scholar 

  44. Ashton, F. and Pickering, W.F., Cobalt(II) gluconate complexes, Aust. J. Chem., 1970, vol. 23, no. 7, p. 1367.

    Article  CAS  Google Scholar 

  45. Greef, R., Peat, R., Peter, L.M., Pletcher, D., and Robinson, J., Instrumental Methods in Electrochemistry, Chichester: Ellis Horwood Ltd., 1985.

    Google Scholar 

  46. Casella, I.G. and Di Fonzo, D.A., Anodic electrodeposition of cobalt oxides from an alkaline bath containing Co-gluconate complexes on glassy carbon. An electroanalytical investigation, Electrochim. Acta, 2011, vol. 56, p. 7536.

    Article  CAS  Google Scholar 

  47. Budevski, E., Staikov, G., and Lorenz, W.J., Electrochemical Phase Formation and Growth, Weinhheim: VCH, 1996.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rudnik E.—the idea and coordination of the work, characterization and buffer capacity of the baths, XRD measurements, analysis of the results, preparing of the manuscript. Dashbold N.—performance of the electrochemical experiments, microscopic observations.

Corresponding author

Correspondence to Ewa Rudnik.

Ethics declarations

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewa Rudnik, Namuun Dashbold Effect of Cl and \({\text{SO}}_{4}^{{2 - }}\) Ions on Electrodeposition of Cobalt from Acidic Gluconate Solutions. Russ J Electrochem 55, 1305–1319 (2019). https://doi.org/10.1134/S1023193519120140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519120140

Keywords:

Navigation