Skip to main content
Log in

The effects of manganese precursors on NO catalytic removal with MnOx/SiO2 catalyst at low temperature

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The low-temperature catalytic NO removal efficiencies of catalysts with two different manganese precursors, manganese acetate (αMA catalyst) and manganese nitrate (αMN catalyst), were compared and studied. The NH3-SCR of NO tests using these catalysts were carried out in a self-made reaction device to measure the catalytic activity of the catalysts. Moreover, the reaction pathway analysis of NH3-SCR of NO on the surface of MnO2/SiO2 catalyst and Mn2O3/SiO2 catalyst were performed based on DFT calculations individually. The experimental results show that the NO conversion of αMN catalyst is higher than the αMA catalyst at low temperature (< 180 °C). Besides, the XRD test shows that the main crystal phase is MnO2 for αMN catalysts, and Mn2O3 for αMA catalyst, and the XPS characterization exhibits that the αMN catalyst has the highest MnO2/Mn2O3 ratio. Moreover, DFT calculations indicate that the decompositions of NH2NO and NHNO are the rate determining steps in the whole NH3-SCR of NO process and the decomposition activation energy of NH2OH and NHNO on MnO2 is lower than that on Mn2O3. This is the main reason for the higher NO conversion of catalyst prepared with manganese nitrate as precursor at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1–36

    Article  CAS  Google Scholar 

  2. Busca G, Larrubia MA, Arrighi L, Ramis G (2005) Catal Today 107–108:139–148

    Article  Google Scholar 

  3. Wallin M, Forser S, Thormählen P, Skoglundh M (2004) Ind Eng Chem Res 43:7723–7731

    Article  CAS  Google Scholar 

  4. Peña DA, Uphade BS, Smirniotis PG (2004) J Catal 221:421–431

    Article  Google Scholar 

  5. Martin D, Duprez D (1997) J Phys Chem B 101:4428–4436

    Article  CAS  Google Scholar 

  6. Martin D, Duprez D (1996) J Phys Chem 100:9429–9438

    Article  CAS  Google Scholar 

  7. Zhang L, Qu H, Du T, Ma W, Zhong Q (2016) Chem Eng J 296:122–131

    Article  CAS  Google Scholar 

  8. Jing W, Guo Q, Hou Y, Han X, Huang Z (2014) Korean J Chem Eng 31:794–800

    Article  CAS  Google Scholar 

  9. Xiao X, Sheng Z, Yang L, Dong F (2016) Catal Sci Technol 6:1507–1514

    Article  CAS  Google Scholar 

  10. Lu X, Song C, Jia S, Tong Z, Tang X, Teng Y (2015) Chem Eng J 260:776–784

    Article  CAS  Google Scholar 

  11. Zuo J, Chen Z, Wang F, Yu Y, Wang L, Li X (2014) Ind Eng Chem Res 53:2647–2655

    Article  CAS  Google Scholar 

  12. Lee SM, Park KH, Kim SS, Kwon DW, Hong SC (2012) J Air Waste Manag Assoc 62:1085–1092

    Article  CAS  Google Scholar 

  13. Li J, Chang H, Ma L, Hao J, Yang RT (2011) Catal Today 175:147–156

    Article  CAS  Google Scholar 

  14. Liu C, Shi J, Gao C, Niu C (2016) Appl Catal A: Gen 522:54–69

    Article  CAS  Google Scholar 

  15. Smirniotis PG, Sreekanth PM, Peña DA, Jenkins RG (2006) Ind Eng Chem Res 45:6436–6443

    Article  CAS  Google Scholar 

  16. Huang J, Tong Z, Huang Y, Zhang J (2008) Appl Catal B 78:309–314

    Article  CAS  Google Scholar 

  17. Kapteijn F, Vanlangeveld AD, Moulijn JA, Andreini A, Vuurman MA, Turek AM, Jehng JM, Wachs IE (1994) J Catal 150:94–104

    Article  CAS  Google Scholar 

  18. Peng Y, Chang H, Dai Y, Li J (2013) Procedia Environ Sci 18:384–390

    Article  CAS  Google Scholar 

  19. Guo P, Guo X, Zheng C (2010) Appl Surf Sci 256:6991–6996

    Article  CAS  Google Scholar 

  20. Zhao Q, Liu Y, Xiang J, Sun L, Su S, Hu S (2010) DFT Study of NH3 and NO Adsorption On Copper-Aluminate Catalysts, IEEE, 2010, pp 1–4.

  21. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  22. Hu Z, Turner CH (2006) J Phys Chem B 110:8337–8347

    Article  CAS  Google Scholar 

  23. Ren D, Gui K (2019) Appl Surf Sci 487:171–179

    Article  CAS  Google Scholar 

  24. Xiang J, Wang L, Cao F, Qian K, Su S, Hu S, Wang Y, Liu L (2016) Chem Eng J 302:570–576

    Article  CAS  Google Scholar 

  25. Yang Y, Liu J, Wang Z, Liu F (2018) Fuel Process Technol 174:17–25

    Article  CAS  Google Scholar 

  26. Liu Z, Zhu J, Li J, Ma L, Woo SI (2014) Acs Appl Mater Interface 6:14500–14508

    Article  CAS  Google Scholar 

  27. Liu J, Li X, Zhao Q, Ke J, Xiao H, Lv X, Liu S, Tadé M, Wang S (2017) Appl Catal B 200:297–308

    Article  CAS  Google Scholar 

  28. Rozanska X, Delbecq F, Sautet P (2010) Phys Chem Chem Phys 12:14930

    Article  CAS  Google Scholar 

  29. Simonetti S, Compañy AD, Brizuela G, Juan A (2016) Colloid Surf B 148:287–292

    Article  CAS  Google Scholar 

  30. Zhang L, Cui S, Guo H, Ma X, Lu W (2016) Comp Mater Sci 112:238–244

    Article  CAS  Google Scholar 

  31. Xie C, Yang S, Shi J, Niu C (2019) React Kinet Mech Cat 128:681–693

    Article  CAS  Google Scholar 

  32. Yang Y, Liu J, Liu F, Wang Z, Ding J, Huang H (2019) Chem Eng J 361:578–587

    Article  CAS  Google Scholar 

  33. Gao F, Tang X, Yi H, Zhao S, Li C, Li J, Shi Y, Meng X (2017) Catalysts 7:199

    Article  Google Scholar 

  34. Deng S, Zhuang K, Xu B, Ding Y, Yu L, Fan Y (2016) Catal Sci Technol 6:1772–1778

    Article  CAS  Google Scholar 

  35. Metkar PS, Salazar N, Muncrief R, Balakotaiah V, Harold MP (2011) Appl Catal B 104:110–126

    Article  CAS  Google Scholar 

  36. Savara A, Li M, Sachtler WMH, Weitz E (2008) Appl Catal B 81:251–257

    Article  CAS  Google Scholar 

  37. Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B (2004) Chem Commun 23:2718

    Article  Google Scholar 

  38. Wang D, Zhang L, Kamasamudram K, Epling WS (2013) Acs Catal 3:871–881

    Article  CAS  Google Scholar 

  39. Boningari T, Pavani SM, Ettireddy PR, Chuang SSC, Smirniotis PG (2018) Mol Catal 451:33–42

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this project from the National Nature Science Foundation of China (51276039) and the Research Subject of Environmental Protection Department of Jiangsu Province of China (2015008) are gratefully acknowledgment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keting Gui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, S., Gui, K., Ren, D. et al. The effects of manganese precursors on NO catalytic removal with MnOx/SiO2 catalyst at low temperature. Reac Kinet Mech Cat 130, 195–215 (2020). https://doi.org/10.1007/s11144-020-01772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01772-1

Keywords

Navigation