Skip to main content

Advertisement

Log in

Dehydroeffusol Rescues Amyloid β25–35-Induced Spatial Working Memory Deficit

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Amyloid β (Aβ) peptides produced from the amyloid precursor protein, a transmembrane protein, are neurotoxic and blocking the neurotoxicity may lead to prevention of Alzheimer’s disease (AD). Here we tested whether Aβ25–35-induced cognitive decline is rescued by treatment with dehydroeffusol, a phenanthrene isolated from Chinese medicine Juncus effusus. Dehydroeffusol (5 ~ 15 mg/kg body weight) was orally administered to mice for 6 days and Aβ25–35 (2 mM) was injected at the rate of 1 μl/min for 3 min into the lateral ventricle. Y-maze test was performed after dehydroeffusol administration for 12 days. Aβ25–35 impaired learning and memory in the test, while the impairment was dose-dependently rescued by dehydroeffusol administration. The present study indicates that treatment with dehydroeffusol is effective for rescuing Aβ25–35-induced cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419. https://doi.org/10.1126/science.278.5337.412

    Article  CAS  PubMed  Google Scholar 

  2. Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384. https://doi.org/10.3233/jad-2001-3509

    Article  CAS  PubMed  Google Scholar 

  3. Crews L, Masliah E (2010) Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet 19:R12–R20. https://doi.org/10.1093/hmg/ddq160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schoonenboom NS, Mulder C, Van Kamp GJ, Mehta SP, Scheltens P, Blankenstein MA, Mehta PD (2005) Amyloid beta 38, 40, and 42 species in cerebrospinal fluid: more of the same? Ann Neurol 58:139–142. https://doi.org/10.1002/ana.20508

    Article  CAS  PubMed  Google Scholar 

  5. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058. https://doi.org/10.1523/JNEUROSCI.20-11-04050.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Selkoe DJ (2008) Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113. https://doi.org/10.1016/j.bbr.2008.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Millucci L, Ghezzi L, Bernardini G, Santucci A (2010) Conformations and biological activities of amyloid β peptide 25−35. Curr Protein Pept Sci 11:54–67. https://doi.org/10.2174/138920310790274626

    Article  CAS  PubMed  Google Scholar 

  8. Smith AK, Klimov DK (2018) Binding of cytotoxic Aβ25-35 peptide to the dimyristoylphosphatidylcholine lipid bilayer. J Chem Inf Model 58:1053–1065. https://doi.org/10.1021/acs.jcim.8b00045

    Article  CAS  PubMed  Google Scholar 

  9. Clementi ME, Marini S, Coletta M, Orsini F, Giardina B, Misiti F (2005) Aβ(31−35) and Aβ(25−35) fragments of amyloid beta-protein induce cellular death through apoptotic signals: role of the redox state of methionine-35. FEBS Lett 579:2913–2918. https://doi.org/10.1016/j.febslet.2005.04.041

    Article  CAS  PubMed  Google Scholar 

  10. Tsai HHG, Lee JB, Shih YC, Wan L, Shieh FK, Chen CY (2014) Location and conformation of amyloid β(25−35) peptide and its sequence-shuffled peptides within membranes: implications for aggregation and toxicity in PC12 cells. ChemMedChem 9:1002–1011. https://doi.org/10.1002/cmdc.201400062

    Article  CAS  PubMed  Google Scholar 

  11. Wang YX, Xia ZH, Jiang X, Li LX, An D, Wang HG, Heng B, Liu YQ (2019) Genistein inhibits Aβ25-35-induced neuronal death with changes in the electrophysiological properties of voltage-gated sodium and potassium channels. Cell Mol Neurobiol 39:809–822. https://doi.org/10.1111/bcpt.13279

    Article  CAS  PubMed  Google Scholar 

  12. Pike C, Burdick D, Walencewicz A, Glabe C, Cotman C (1993) Neurodegeneration induced by β-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13:1676–1687. https://doi.org/10.1523/JNEUROSCI.13-04-01676.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crichton GE, Bryan J, Murphy KJ (2013) Dietary antioxidants, cognitive function and dementia--a systematic review. Plant Foods Hum Nutr 68:279–292. https://doi.org/10.1007/s11130-013-0370-0

    Article  CAS  PubMed  Google Scholar 

  14. Liao YJ, Zhai HF, Zhang B, Duan TX, Huang JM (2011) Anxiolytic and sedative effects of dehydroeffusol from Juncus effusus in mice. Planta Med 77:416–420. https://doi.org/10.1055/s-0030-1250517

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Wang Y, Zhai H, Liao Y, Zhang B, Huang J (2012) Phenanthrenes from Juncus effusus with anxiolytic and sedative activities. Nat Prod Res 26:1234–1239. https://doi.org/10.1080/14786419.2011.561491

    Article  CAS  PubMed  Google Scholar 

  16. Greca MD, Fiorentino A, Monaco P, Pinto G, Pollio A, Previtera L (1996) Action of antialgal compounds from Juncus effusus L. on Selenastrum capricornutum. J Chem Ecol 22:587–603. https://doi.org/10.1007/BF02033657

    Article  CAS  PubMed  Google Scholar 

  17. Singhuber J, Baburin I, Khom S, Zehl M, Urban E, Hering S, Kopp B (2012) GABA(a) receptor modulators from the Chinese herbal drug Junci Medulla--the pith of Juncus effusus. Planta Med 78:455–458. https://doi.org/10.1055/s-0031-1298174

    Article  CAS  PubMed  Google Scholar 

  18. Tamano H, Sato Y, Takiguchi M, Murakami T, Fukuda T, Kawagishi H, Suzuki M, Takeda A (2019) CA1 LTP attenuated by corticosterone is canceled by effusol via rescuing intracellular Zn2+ dysregulation. Cell Mol Neurobiol 39:975–983. https://doi.org/10.1007/s10571-019-00693-5

    Article  CAS  PubMed  Google Scholar 

  19. Lu P, Mamiya T, Lu LL, Mouri A, Niwa M, Hiramatsu M, Zou LB, Nagai T, Ikejima T, Nabeshima T (2009) Silibinin attenuates amyloid beta(25-35) peptide-induced memory impairments: implication of inducible nitric-oxide synthase and tumor necrosis factor-alpha in mice. J Pharmacol Exp Ther 331:319–326. https://doi.org/10.1124/jpet.109.155069

    Article  CAS  PubMed  Google Scholar 

  20. Lu P, Mamiya T, Lu L, Mouri A, Ikejima T, Kim HC, Zou LB, Nabeshima T (2012) Xanthoceraside attenuates amyloid β peptide25–35-induced learning and memory impairments in mice. Psychopharmacology 219:181–190. https://doi.org/10.1007/s00213-011-2386-1

    Article  CAS  PubMed  Google Scholar 

  21. Hiramatsu M, Takiguchi O, Nishiyama A, Mori H, Hiramatsu M, Takiguchi O, Nishiyama A, Mori H (2010) Cilostazol prevents amyloid β peptide(25-35)-induced memory impairment and oxidative stress in mice. Br J Pharmacol 161:1899–1912. https://doi.org/10.1111/j.1476-5381.2010.01014.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aminyavari S, Zahmatkesh M, Farahmandfar M, Khodagholi F, Dargahi L, Zarrindast MR (2019) Protective role of Apelin-13 on amyloid β25-35-induced memory deficit; involvement of autophagy and apoptosis process. Prog Neuropsychopharmacol Biol Psychiatry 89:322–334. https://doi.org/10.1016/j.pnpbp.2018.10.00

    Article  CAS  PubMed  Google Scholar 

  23. Ghumatkar PJ, Patil SP, Peshattiwar V, Vijaykumar T, Dighe V, Vanage G, Sathaye S (2019) The modulatory role of phloretin in Aβ25-35 induced sporadic Alzheimer's disease in rat model. Naunyn Schmiedeberg's Arch Pharmacol 392:327–339. https://doi.org/10.1007/s00210-018-1588-z

    Article  CAS  Google Scholar 

  24. Hynd MR, Scott HL, Dodd PR (2010) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int 45:583–595. https://doi.org/10.1016/j.neuint.2004.03.007

    Article  CAS  Google Scholar 

  25. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460:525–542. https://doi.org/10.1007/s00424-010-0809-1

    Article  CAS  PubMed  Google Scholar 

  26. Lipton SA (2004) Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer's disease and other neurologic disorders. J Alzheimers Dis 6:S61–S74. https://doi.org/10.3233/jad-2004-6s610

    Article  CAS  PubMed  Google Scholar 

  27. Wang R, Reddy PH (2017) Role of glutamate and NMDA receptors in Alzheimer's disease. J Alzheimers Dis 57:1041–1048. https://doi.org/10.3233/JAD-160763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inoue Y, Ueda M, Masuda T, Misumi Y, Yamashita T, Ando Y (2019) Memantine, a noncompetitive N-methyl-D-aspartate receptor antagonist, attenuates cerebral amyloid angiopathy by increasing insulin-degrading enzyme expression. Mol Neurobiol 56:8573–8588. https://doi.org/10.1007/s12035-019-01678-7

    Article  CAS  PubMed  Google Scholar 

  29. Gray CW, Patel AJ (1995) Neurodegeneration mediated by glutamate and beta-amyloid peptide: a comparison and possible interaction. Brain Res 691:169–179. https://doi.org/10.1016/0006-8993(95)00669-h

    Article  CAS  PubMed  Google Scholar 

  30. de Ceballos ML, Brera B, Fernández-Tomé MP (2001) Beta-amyloid-induced cytotoxicity, peroxide generation and blockade of glutamate uptake in cultured astrocytes. Clin Chem Lab Med 39:317–318. https://doi.org/10.1515/CCLM.2001.049

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takeda.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, T., Sato, Y., Takiguchi, M. et al. Dehydroeffusol Rescues Amyloid β25–35-Induced Spatial Working Memory Deficit. Plant Foods Hum Nutr 75, 279–282 (2020). https://doi.org/10.1007/s11130-020-00816-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-020-00816-0

Keywords

Navigation