Skip to main content
Log in

Estimation of Mine Water Quantity: Development of Guidelines for Indian Mines

矿山(井)涌水量估算:建立印度指南

Einschätzung des Bergbauwasservolumens: Entwicklung von Leitlinien für Bergbaue in Indien

ESTIMACIÓN DE LA CANTIDAD DE AGUA DE MINA: DESARROLLO DE DIRECTRICES PARA LAS MINAS INDIAS

  • Technical Communication
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

There are no available guidelines in India for estimating the quantity of mine water in an operational mining pit. Based on multiple case studies, procedures to determine water quantities have been developed for Indian geo-mining conditions, which varies with season and pit depth, India’s monsoonal rainfall pattern, aquifer conditions (local and regional), and groundwater flow directions have been considered. These guidelines can be used for scientific assessments in surface pit mines, and for planning dewatering. Groundwater movement in underground mines is predominantly lateral, coinciding with the water table, and recharged by leakage from overlying aquifers, so water estimation can be based on volume and the size of voids/openings created underground. These guidelines should be useful for planning mine production and water management.

抽象

在印度,目前还没有估算生产矿山(井)涌水量的方法指南。基于多个案例研究,建立了适于印度地质-开采条件的涌水量估算方法指南,方法随季节和坑(井)深而变化。指南已经考虑了印度季风降雨模式、含水层条件(局部和区域)及地下水流方向等因素。指南能用于露天坑涌水量科学估算和制定疏排水方案。井工矿井的地下水以侧向流动为主,与潜水位一致,获取上覆含水层渗透补给,应根据地下形成的疏干空间体积和裂隙/孔洞大小估算涌水量。所建涌水量估算指南有助于矿井生产规划和矿井水管理。

Zusammenfassung

In Indien gibt es keine verfügbaren Leitlinien, um die Menge von Bergbauwasser in einem aktiven Tagebau einzuschätzen. Auf mehreren Fallstudien basierend, wurden Vorgangsweisen für die Bestimmung von Wassermengen unter indischen Geobergbau-Bedingungen entwickelt. Diese variieren mit Jahreszeit und Tagebautiefe, mit dem Muster der indischen Monsunregenfälle, mit lokalen und regionalen Grundwasserleitern, und mit den Grundwasserfließrichtungen. Diese Leitlinien können für wissenschaftliche Einschätzungen in Tagebaulöchern genutzt werden, sowie für die Planung von Entwässerung. In untertägigen Bergbauen bewegt sich das Grundwasser überwiegend seitlich, parallel zum Grundwasserspiegel, und wird durch Zusickern aus höheren Leitern gespeist. In diesem Fall kann das Wasser mittels Volumen und Größe der bergbaulichen Hohlräume eingeschätzt werden. Diese Leitlinien sollten für die Bergbauproduktionsplanung und für die Wasserbewirtschaftung nützlich sein.

Resumen

No hay pautas disponibles en la India para estimar la cantidad de agua de mina en un pozo minero operativo. Basado en múltiples estudios de caso, se han desarrollado procedimientos para determinar las cantidades de agua para las condiciones de geo-minería de la India, que varían según la estación y la profundidad del pozo; se han considerado el patrón de lluvia monzónica de la India, las condiciones de los acuíferos (locales y regionales) y las direcciones del flujo de las aguas subterráneas. Estas pautas se pueden utilizar para evaluaciones científicas en minas a cielo abierto y para planificar el desagote. El movimiento de aguas subterráneas en las minas subterráneas es predominantemente lateral, coincidiendo con la capa freática y es recargada por fugas de los acuíferos suprayacentes, por lo que la estimación del agua puede basarse en el volumen y el tamaño de los huecos/aberturas creadas bajo tierra. Estas pautas deberían ser útiles para planificar la producción minera y la gestión del agua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(Source: Soni 2019)

Fig. 2

(Based on different mining case studies)

References

  • Central Groundwater Board (CGWB) (1997) Groundwater Estimation Methodology (GEC’97), Govt. of India, New Delhi. http://cgwb.gov.in. Accessed 26 June 2019

  • CMRI (2000) Feasibility of Manikgarh Cement limestone mine workings below ground level (303 MRL) and its impact on water regime of the area, Chandrapur District, Maharashtra. Technical Report GC/MT/R/1/99-2000 (unpubl.) to M/s Manikgarh Cement, Gadchandur, Maharashtra, CSIR, Central Mining Research Institute (CMRI), Dhanbad

  • CMRI (2006) Geo-hydrological studies for Naokari limestone mine, Awarpur Cement Works, UltraTech Cement, District Chandrapur, Maharashtra. Technical Report GC/MT/N/14/2004-05 (unpubl.) to M/s UltraTech Cement, Mumbai, CSIR, CMRI, Dhanbad

  • CMRI (2007a) Geo-hydrological studies for Kovaya limestone mine of UltraTech Cement, District—Amreli (Gujarat).Technical Report GC/MT/N/18/2005-06 (unpubl.) to UltraTech Cement, Gujarat Cement Works (GCW), Gujarat, CMRI, Dhanbad

  • CMRI (2007b) Comprehensive geo-hydrological studies for Rajhara Open Cast Mine, Dalli Rajhara, Chhattisgarh. Technical report GC/MT/N/22/2005-06 (unpubl.) to M/s Bhilai Steel Plant (SAIL), Dalli Rajhara, CMRI, Dhanbad

  • CSIR-CIMFR (2009) Upper catchment area treatment plan for Nongtrai Limestone Mine of M/s Lafarge Umiam Mining Private Limited (LUMPL), Shillong, Meghalaya. Technical report GC/MT/N/16/2007-08 (unpubl.) to Lafarge Cement, Shillong CSIR-Central Institute of Mining and Fuel Research (CIMFR)

  • CSIR-CIMFR (2011) Geo-hydrological studies for quantitative estimation of water and its management at the Lanjiberna Limestone and Dolomite Mine of M/s OCL India Ltd, District—Sundergarh, Orissa. Technical report CNP/N/2344/2009-10 (unpubl.) to OCL India, Rajgangpur (Orissa), CSIR-CIMFR

  • CSIR-CIMFR (2013a) Water pit sustainability study of Keranadari Opencast Coal Mine, Jharkhand. Technical report CNP/N/3580/2012-13 (unpubl.) to Jharkhand Integrated Power Ltd (JIPL), an associated unit of M/s Reliance Power Ltd, Mumbai, CSIR-CIMFR

  • CSIR-CIMFR (2013b) Geo-hydrological study for mining at deeper levels in limestone mine of M/s Trinetra Cement, District—Banswara Rajasthan, India. Technical report CNP/N/3259/2012-13 (unpubl.) to India Cement, Chennai

  • CSIR-CIMFR (2013c) Designing of stope operations along with geo-hydrological investigations for Kandri Mine for Kandri Mine of M/s MOIL Ltd, Nagpur. Technical report CNP/N/2924/2011-12 (unpubl.) to Manganese Ore India Ltd (MOIL), Nagpur

  • CSIR-CIMFR (2013d) Geo-hydrological study for assessment of seepage effect in weep holes of highwall mining faces at Medapalli Opencast Coal Mine of Singareni Collieries Co. Ltd, Ramgundam Area, Andhra Pradesh, India. Technical report CNP/N/3120/2011-12 (unpubl.) to M/s Advanced Mining Technology (AMT), Hyderabad

  • CSIR-CIMFR (2017) Salinity ingress study with special reference to hydro-geological regime in and around Narmada Cement—Jafarabad Works (NCJW), UltraTech Cement Ltd, Village, Babarkot, Taluka, Jafarabad, District—Amreli (Gujarat). Technical Report CNP/N/4445/2016-17 (unpubl.) to UltraTech Cement, NCJW Gujarat

  • CSIR-CIMFR (2018a) Geo-hydrological Study for Pandridalli and Rajhara Pahar Mining Lease (Rajhara Mechanized Mine) of Bhilai Steel Plant, Dalli-Rajhara, District-Balod (Chhattisgarh). Technical report SSP/N/232/2017-18 (unpubl.) to BSP-SAIL, Chhattisgarh

  • CSIR-CIMFR (2018b) Hydro-geological Study of Malanjkhand Copper Project, Hindustan Copper Ltd, District Balaghat (M.P.). Technical report SSP/N/235/2017-18 (unpubl.) to M/s Hindustan Copper Ltd (HCL)

  • GOWA (2013) Western Australian water in mining guideline: looking after all our water needs. Govt. of Western Australia, Dept of Water, Water licensing delivery series, Report 12

  • Khond MV (2014) Hydro-geochemical characterization of groundwater around Naokari and Manikgarh Limestone mines, Chandrapur District, Maharashtra. PhD thesis (unpublished), Rashtrashant Tukdoji Maharaj Nagpur Univ (RTMNU), Nagpur

  • NCERT (National Council of Education Research and Training) (2018) Climate and water resources, rainfall in India, NCERT Textbooks on Geography, Byjus learning app. Accessed 14 Dec 2019

  • Sewa S (2012) Hydrological investigation of Kandri Manganese Mine Tahsil-Ramtek, District Nagpur, Maharashtra. Report to CSIR-CIMFR, Srushti Sewa, Nagpur (unpubl.)

  • Soni AK (2019) Mining of minerals and groundwater in India. In: Gomo M (ed) Groundwater. Intech, London. https://doi.org/10.5772/intechOpen.85309

    Chapter  Google Scholar 

  • Soni AK, Bagde MN, Bhavika M (2013) Pumping test at a mine site: a case study of Kandri Manganese Ore Mine. In: Workshop on groundwater management and regulations—challenges Ahead, SGB Amravati Univ, Amravati (on CD)

  • Soni AK, Sahoo LK, Ghosh UK, Khond MV (2015) Importance of radius of influence and its estimation in a limestone quarry. J Inst Eng 96(1):77–83. https://doi.org/10.1007/s40033-014-0059-z

    Article  Google Scholar 

Download references

Acknowledgements

I duly acknowledge all of the mines who provided critical aid to this study: Hindustan Copper Ltd. (HCL); Manikgarh Cement, Gadchandur, Maharashtra; UltraTech Cement, Mumbai; UltraTech Cement, Gujarat Cement Works (GCW); UltraTech Cement, NCJW, Gujarat; Lafarge Umiam Mining Private Ltd (LUMPL), Shillong, Meghalaya; Bhilai Steel Plant (SAIL), Dalli Rajhara; OCL India, Rajgangpur (Orissa); M/s Jharkhand Integrated Power Ltd (JIPL), Mumbai; Advanced Mining Technology (AMT), Hyderabad (A.P.); Manganese Ore India Ltd (MOIL), Nagpur, and India Cement, Chennai. Without their help, it would not have been possible to research and develop such guidelines. I also thank the Director of the CSIR-CIMFR, Dhanbad for permitting me to publish this work. During this research, technical impediments were encountered and obstacles faced; all of the colleagues who helped me directly or indirectly are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Soni.

Appendix

Appendix

HCL/MCP CASE STUDY (CSIR-CIMFR 2018b)

The Malanjkhand copper project (MCP) is a large operative open pit mechanized mine with 3 million ton per annum planned production. MCP is located between the 21° 56 to 22° 05 N (latitude) and 80° 39 to 80° 46 E (longitude) and can be traced on Survey of India Topo sheet 64 B /12,64B/16, 64C/9, and 64C/13. MCP falls within the catchment boundaries of the Banjar River. The study area includes four watersheds (5D5D3, 5D5D4, 4E8I2, and 4E8I5). Currently, this open pit mine has reached its last stage and is being converted into an underground mine for Cu ore extraction (chalcopyrite) because the ore at shallow depths is exhausted. The water requirement for this mine project is fulfilled by surface water from the Banjar River, not groundwater. The pumped out pit water is distributed at various process points as well as recycled for industrial applications.

The water quantity for various seasons and for different depth has been predicted for MCP using the developed guidelines (Tables 4, 5). The input data is given below, the calculation details follow:

Table 4 Predicted water quantity at MCP

Input data:

  • Lease area = 479.9 ha

  • Maximum rainfall = 1484 mm

  • Catchment area = 1413.5 ha

  • Water level fluctuation (WLF) = 6.9 m (from field observations)

  • Specific yield = 0.20

  • Pit bottom RL = 340 m

  • Bench height = 12 m

  • Annual pumped quantity in the year 2018 = 1,360,000 m3

  • Aquifer encountered = Gneisses (unconfined)

  • Pit depth = 240 m (bgl); water table has been intercepted.

  • Other field conditions: the presence of two mining system i.e. open pit and underground in tandem; the open pit will be closed in 2020 and there will be no more ore produced from open pit; underground operations will commence in the immediate vicinity of the open pit in 2020; per the mine plan, the same water quantity will be pumped out of the mine pit in 2019 and 2020 as in 2018; the total quantity available for pumping will diminish with time.

  • GW Calculation

    Method 1: Infiltration Method

    The maximum feasible groundwater quantity = Lease area × Rainfall (max.) × RIF = 4,799,000 × 1.484 × 0.40

    A = 2,848,686.4 m3

    Method 2: Specific Yield Method

    The maximum feasible groundwater quantity = Lease Area × Ma × fluctuation × specific yield = 4,799,000 × 6.9 × 0.20

    B = 6,622,620 m3

    The average groundwater quantity within the lease hold area (C = (A + B)/2):

    C = (2,848,686.4 + 6622620)/2 = 4,735,653.2 m3/year

  • SW Calculation

    Catchment area × Ma × rainfall (m) × runoff = 1413.5 ha or 14,135,000 m2 × 1.454 m × 0.46

    SW = 9,649,116.40 m3/year.

Therefore, SW + GW = 4,735,653.2 + 9,649,116.40 = 14,384,769.6 m3/year or ≈ 14,400,000 m3/year. For the purpose of estimation in surface mines, total water quantity in pit is 10% of the anticipated /predicted water quantity i.e. 10% of (SW + GW). Therefore, the total water quantity (Qpredicted) available in the pit totals at least 14,400,000/10 = 1,440,000 m3/year.

Water quantity field study for pumping/year (at 340–328 m RL) is calculated as follows:

Qpumping = Annual pumped quantity (actual from field per MCP office record) ± 6% = 1,360,000 + 6% of 1,360,000 = 1,360,000 + 81,600 = 1,441,600 m3/year ≈ 1,440,000 m3/year

Inference drawn from study: Qpumping = Qpredicted. The two water quantities nearly match; hence, the predicted quantity is correct.

Accordingly, when per year water quantity (14,400,000 m3/year) is calculated, estimation of the quantity at one RL of the mine pit, preferably the lowest, is possible (Table 5). The incremental increase for depth variations can be applied thereafter @ 10% per the developed guidelines. In this case study, water quantity was only estimated at 340–328 m RL because this pit mine has reached its final RL.The distribution range, from 65 to 6% of the total water quantity, has been applied and this varies as per the long-term average annual rainfall. The shown water quantity in Table 4, column 3 is the annual water quantity (calculated/estimated).

Table 5 Approximate water quantity (Q) at MCP during different period and at different depths (in m3)

These guidelines have been applied at this operating MCP mine site. Mine management uses engineering judgment to modify water management measures based on periodic observations of actual field conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, A.K. Estimation of Mine Water Quantity: Development of Guidelines for Indian Mines. Mine Water Environ 39, 397–406 (2020). https://doi.org/10.1007/s10230-020-00685-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00685-8

Keywords

Navigation