Skip to main content
Log in

DMSP-Producing Bacteria Are More Abundant in the Surface Microlayer than Subsurface Seawater of the East China Sea

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial production and catabolism of dimethylsulfoniopropionate (DMSP), generating the climatically active gases dimethyl sulfide (DMS) and methanethiol (MeSH), have key roles in global carbon and sulfur cycling, chemotaxis, and atmospheric chemistry. Microorganisms in the sea surface microlayer (SML), the interface between seawater and atmosphere, likely play an important role in the generation of DMS and MeSH and their exchange to the atmosphere, but little is known about these SML microorganisms. Here, we investigated the differences between bacterial community structure and the distribution and transcription profiles of the key bacterial DMSP synthesis (dsyB and mmtN) and catabolic (dmdA and dddP) genes in East China Sea SML and subsurface seawater (SSW) samples. Per equivalent volume, bacteria were far more abundant (~ 7.5-fold) in SML than SSW, as were those genera predicted to produce DMSP. Indeed, dsyB (~ 7-fold) and mmtN (~ 4-fold), robust reporters for bacterial DMSP production, were also far more abundant in SML than SSW. In addition, the SML had higher dsyB transcripts (~ 3-fold) than SSW samples, which may contribute to the significantly higher DMSP level observed in SML compared with SSW. Furthermore, the abundance of bacteria with dmdA and their transcription were higher in SML than SSW samples. Bacteria with dddP and transcripts were also prominent, but less than dmdA and presented at similar levels in both layers. These data indicate that the SML might be an important hotspot for bacterial DMSP production as well as generating the climatically active gases DMS and MeSH, a portion of which are likely transferred to the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The raw reads of the high throughput sequencing were deposited into the NCBI Sequence Read Archive (SRA) database with accession number SRP174872 under the BioProject PRJNA511511. The partial sequences of the dsyB gene from clone libraries were available in the GenBank database with accession numbers MN232008 to MN232099.

References

  1. Lovelock, J.E, Maggs, R.J, Rasmussen R.A.: Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature. 237, 452–453 (1972). https://doi.org/10.1038/237452a0

    Article  CAS  Google Scholar 

  2. Nevitt, G.A, Bonadonna, F.: Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds. Biol. Lett. 1, 303–305 (2005). https://doi.org/10.1098/rsbl.2005.0350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Steinke, M., Stefels, J., Stamhuis, E.: Dimethyl sulfide triggers search behavior in copepods. Limnol. Oceanogr. 51, 1925–1930 (2006). https://doi.org/10.4319/lo.2006.51.4.1925

    Article  CAS  Google Scholar 

  4. Charlson, R.J, Lovelock, J.E, Andreae, M.O, Warren, S.G.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987). https://doi.org/10.1038/326655a0

    Article  CAS  Google Scholar 

  5. Vallina, SM., Simo, R.: Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science. 315, 506–508 (2007). https://doi.org/10.1126/science.1133680

    Article  PubMed  CAS  Google Scholar 

  6. Wolfe, G.V., Steinke, M., Kirst, G.O.: Grazing-activated chemical defence in a unicellular marine alga. Nature. 387, 894–897 (1997). https://doi.org/10.1038/43168

    Article  CAS  Google Scholar 

  7. Sunda, W., Kieber, D.J., Kiene, R.P., Huntsman, S.: An antioxidant function for DMSP and DMS in marine algae. Nature. 418, 317–320 (2002). https://doi.org/10.1038/nature00851

    Article  PubMed  CAS  Google Scholar 

  8. Seymour J.R., Simo, R., Ahmed, T., Stocker, R.: Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science. 329, 342–345 (2010). https://doi.org/10.1126/science.1188418

    Article  PubMed  CAS  Google Scholar 

  9. Kellogg W.W., Cadle R.D., Allen, E.R., Lazrus, A.L., Martell, E.A.: The sulfur cycle. Science. 175, 587–596 (1972). https://doi.org/10.1126/science.175.4022.587

    Article  PubMed  CAS  Google Scholar 

  10. Zhang X.H., Liu, J. Liu, J., Yang, G., Xue, C.X., Curson, A.R.J., Todd, J.D.: Biogenic production of DMSP and its degradation to DMS-their roles in the global sulfur cycle. Sci. China Life Sci. 62, 1296–1319 (2019). https://doi.org/10.1007/s11427-018-9524-y

    Article  PubMed  CAS  Google Scholar 

  11. Curson, A.R., Todd, J.D., Sullivan, M.J., Johnston, A.W.: Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 9, 849–859 (2011). https://doi.org/10.1038/nrmicro2653

    Article  PubMed  CAS  Google Scholar 

  12. Ackman, R.G., Tocher, C.S., McLachlan, J.: Occurrence of dimethyl-β-propiothetin in marine phytoplankton. J Fish Res Board. 23, 357–364 (1966). https://doi.org/10.1139/f66-030

    Article  CAS  Google Scholar 

  13. Otte, M.L., Wilson, G., Morris, J.T., Moran, B.M.: Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants. J. Exp. Bot. 55, 1919–1925 (2004). https://doi.org/10.1093/jxb/erh178

    Article  PubMed  CAS  Google Scholar 

  14. Van Alstyne K.L., Puglisi, M.P.: DMSP in marine macroalgae and macroinvertebrates: distribution, function, and ecological impacts. Aquat. Sci. 69, 394–402 (2007). https://doi.org/10.1007/s00027-007-0888-z

    Article  CAS  Google Scholar 

  15. Raina, J.B., Tapiolas, D.M., Foret, S., Lutz, A., Abrego, D., Ceh J., Seneca, F.O., Clode, P.L., Bourne, D.G., Willis, B.L., Motti, C.A.: DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature. 502, 677–680 (2013). https://doi.org/10.1038/nature12677

    Article  PubMed  CAS  Google Scholar 

  16. Dickson, D.M., Jones, R.G., Davenport, J.: Steady state osmotic adaptation in Ulva lactuca. Planta. 150, 158–165 (1980). https://doi.org/10.1007/BF00582360

    Article  PubMed  CAS  Google Scholar 

  17. Curson, A.R.J., Williams, B.T., Pinchbeck, B.J., Sims, L.P., Martinez, A.B., Rivera, P.P.L., Kumaresan, D., Mercade, E., Spurgin, L.G., Carrion, O., Moxon, S., Cattolico, R.A., Kuzhiumparambil, U., Guagliardo P., Clode, P.L., Raina, J.B., Todd, J.D.: DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat. Microbiol. 3, 430–439 (2018). https://doi.org/10.1038/s41564-018-0119-5

    Article  PubMed  CAS  Google Scholar 

  18. Kageyama, H., Tanaka, Y., Shibata, A., Waditee-Sirisattha, R., Takabe, T.: Dimethylsulfoniopropionate biosynthesis in a diatom Thalassiosira pseudonana: Identification of a gene encoding MTHB-methyltransferase. Arch. Biochem. Biophys. 645, 100–106 (2018). https://doi.org/10.1016/j.abb.2018.03.019

    Article  PubMed  CAS  Google Scholar 

  19. Curson, A.R., Liu, J., Bermejo Martinez, A., Green, R.T., Chan, Y., Carrion, O., Williams, B.T., Zhang, S.H., Yang, G.P., Bulman Page, P.C., Zhang, X.H., Todd, J.D.: Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nat. Microbiol. 2, 17009 (2017). https://doi.org/10.1038/nmicrobiol.2017.9

    Article  PubMed  CAS  Google Scholar 

  20. Williams, B.T., Cowles, K., Bermejo Martinez, A., Curson, A.R.J., Zheng, Y., Liu, J., Newton-Payne, S., Hind, A.J., Li, C.Y., Rivera, P.P.L., Carrion, O., Liu, J., Spurgin, L.G., Brearley, C.A., Mackenzie, B.W., Pinchbeck, B.J., Peng, M., Pratscher, J., Zhang, X.H., Zhang, Y.Z., Murrell, J.C., Todd, J.D.: Bacteria are important dimethylsulfoniopropionate producers in coastal sediments. Nat. Microbiol. 4, 1815–1825 (2019). https://doi.org/10.1038/s41564-019-0527-1

    Article  PubMed  CAS  Google Scholar 

  21. Rhodes, D., Gage, D.A., Cooper, A., Hanson, A.D.: S-Methylmethionine conversion to dimethylsulfoniopropionate: Evidence for an unusual transamination reaction. Plant Physiol. 115, 1541–1548 (1997). https://doi.org/10.1104/pp.115.4.1541

  22. Kocsis, M.G., Hanson, A.D.: Biochemical evidence for two novel enzymes in the biosynthesis of 3-dimethylsulfoniopropionate in Spartina alterniflora. Plant Physiol. 123, 1153–1161 (2000). https://doi.org/10.1104/pp.123.3.1153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tripp H.J., Kitner, J.B., Schwalbach M.S., Dacey J.W., Wilhelm L.J., Giovannoni S.J.: SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature. 452, 741–744 (2008). https://doi.org/10.1038/nature06776

    Article  PubMed  CAS  Google Scholar 

  24. Thume, K., Gebser, B., Chen, L., Meyer, N., Kieber, D.J., Pohnert, G.: The metabolite dimethylsulfoxonium propionate extends the marine organosulfur cycle. Nature. 563, 412–415 (2018). https://doi.org/10.1038/s41586-018-0675-0

    Article  PubMed  CAS  Google Scholar 

  25. Howard, E.C., Sun, S., Biers, E.J., Moran, M.A.: Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ. Microbiol. 10, 2397–2410 (2008). https://doi.org/10.1111/j.1462-2920.2008.01665.x

    Article  PubMed  CAS  Google Scholar 

  26. Varaljay, V.A., Gifford, S.M., Wilson, S.T., Sharma, S., Karl, D.M., Moran, M.A.: Bacterial dimethylsulfoniopropionate degradation genes in the oligotrophic north pacific subtropical gyre. Appl. Environ. Microbiol. 78, 2775–2782 (2012). https://doi.org/10.1128/AEM.07559-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cui, Y., Suzuki, S., Omori, Y., Wong, S.K., Ijichi, M., Kaneko, R., Kameyama, S., Tanimoto, H., Hamasaki, K.: Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical pacific ocean. Appl. Environ. Microbiol. 81, 4184–4194 (2015). https://doi.org/10.1128/AEM.03873-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Varaljay, V.A., Howard, E.C., Sun, S., Moran, M.A.: Deep sequencing of a dimethylsulfoniopropionate-degrading gene (dmdA) by using PCR primer pairs designed on the basis of marine metagenomic data. Appl. Environ. Microbiol. 76, 609–617 (2010). https://doi.org/10.1128/AEM.01258-09

    Article  PubMed  CAS  Google Scholar 

  29. Zeng, Y.X., Qiao, Z.Y., Yu, Y., Li, H.R., Luo, W.: Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden. Sci. Rep. 6, 33031 (2016). https://doi.org/10.1038/srep33031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Landa, M., Burns, A.S., Durham, B.P., Esson, K., Nowinski, B., Sharma, S., Vorobev, A., Nielsen, T., Kiene, R.P., Moran, M.A.: Sulfur metabolites that facilitate oceanic phytoplankton-bacteria carbon flux. ISME J. 13, 2536–2550 (2019). https://doi.org/10.1038/s41396-019-0455-3

    Article  PubMed  CAS  Google Scholar 

  31. Alcolombri, U., Ben-Dor, S., Feldmesser, E., Levin, Y., Tawfik, D.S., Vardi, A.: Marine sulfur cycle. Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle. Science. 348, 1466–1469 (2015). https://doi.org/10.1126/science.aab1586

    Article  PubMed  CAS  Google Scholar 

  32. Johnston, A.W. BIOGEOCHEMISTRY. Who can cleave DMSP? Science. 348, 1430–1431 (2015). https://doi.org/10.1126/science.aac5661

    Article  PubMed  CAS  Google Scholar 

  33. Sun, J., Todd, J.D., Thrash, J.C., Qian, Y., Qian, M.C., Temperton, B., Guo, J., Fowler, E.K., Aldrich, J.T., Nicora, C.D., Lipton, M.S., Smith, R.D., De Leenheer, P., Payne, S.H., Johnston, A.W., Davie-Martin, C.L., Halsey, K.H., Giovannoni, S.J.: The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nat. Microbiol. 1, 16065 (2016). https://doi.org/10.1038/nmicrobiol.2016.65

    Article  PubMed  CAS  Google Scholar 

  34. Bullock, H.A., Luo, H., Whitman, W.B.: Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front. Microbiol. 8, 637 (2017). https://doi.org/10.3389/fmicb.2017.00637

    Article  PubMed  PubMed Central  Google Scholar 

  35. Todd, J.D., Curson, A.R., Dupont, C.L., Nicholson, P., Johnston, A.W.: The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ. Microbiol. 11, 1376–1385 (2009). https://doi.org/10.1111/j.1462-2920.2009.01864.x

    Article  PubMed  CAS  Google Scholar 

  36. Kirkwood, M., Todd, J.D., Rypien, K.L., Johnston, A.W.: The opportunistic coral pathogen Aspergillus sydowii contains dddP and makes dimethyl sulfide from dimethylsulfoniopropionate. ISME J. 4, 147–150 (2010). https://doi.org/10.1038/ismej.2009.102

    Article  PubMed  CAS  Google Scholar 

  37. Raina, J.B., Dinsdale, E.A., Willis, B.L., Bourne, D.G.: Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trends Microbiol. 18, 101–108 (2010). https://doi.org/10.1016/j.tim.2009.12.002

    Article  PubMed  CAS  Google Scholar 

  38. Liu, J., Liu, J., Zhang, S.H., Liang, J., Lin, H., Song, D., Yang, G.P., Todd, J.D., Zhang, X.H.: Novel insights into bacterial dimethylsulfoniopropionate catabolism in the East China Sea. Front. Microbiol. 9, 3206 (2018). https://doi.org/10.3389/fmicb.2018.03206

    Article  PubMed  PubMed Central  Google Scholar 

  39. Choi, D.H., Park, K.T., An, S.M., Lee. K., Cho, J.C., Lee, J.H., Kim, D., Jeon, D., Noh, J.H.: Pyrosequencing revealed SAR116 clade as dominant dddP-containing bacteria in oligotrophic NW Pacific Ocean. PLoS One. 10, e0116271 (2015). https://doi.org/10.1371/journal.pone.0116271

  40. Howard, E.C., Henriksen, J.R., Buchan, A., Reisch, C.R., Burgmann, H., Welsh, R., Ye, W., Gonzalez, J.M., Mace, K., Joye, S.B., Kiene, R.P., Whitman, W.B., Moran, M.A.: Bacterial taxa that limit sulfur flux from the ocean. Science. 314, 649–652 (2006). https://doi.org/10.1126/science.1130657

    Article  PubMed  CAS  Google Scholar 

  41. Kiene, R.P., Linn, L.J.: Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethylsulfide in the Gulf of Mexico. Limnol. Oceanogr. 45, 849–861 (2000). https://doi.org/10.4319/lo.2000.45.4.0849

    Article  CAS  Google Scholar 

  42. Liss, P.S., Duce, R.A:. The sea surface and global change. Cambridge University Press, Cambridge (1997)

  43. Parker, B., Barsom, G.: Biological and chemical significance of surface microlayers in aquatic ecosystems. Bioscience. 20, 87–93 (1970). https://doi.org/10.2307/1294827

    Article  CAS  Google Scholar 

  44. Hatcher, R.F., Parker, B.C.: Microbiological and chemical enrichment of freshwater-surface microlayers relative to the bulk-subsurface water. Can. J. Microbiol. 20, 1051–1057 (1974). https://doi.org/10.1139/m74-162

    Article  PubMed  CAS  Google Scholar 

  45. Garrett, W.D.: The organic chemical composition of the ocean surface. Deep-Sea Res. Oceanogr. Abstr. 14, 221–227 (1967). https://doi.org/10.1016/0011-7471(67)90007-1

    Article  CAS  Google Scholar 

  46. Jarvis, N.L.: Adsorption of surface-active material at the sea-air interface. Limnol. Oceanogr. 12, 213–221 (1967). https://doi.org/10.4319/lo.1967.12.2.0213

    Article  Google Scholar 

  47. Quinn, J.A., Otto, N.C.: Carbon dioxide exchange at the air-sea interface: flux augmentation by chemical reaction. J. Geophys. Res. 76, 1539–1549 (1971). https://doi.org/10.1029/JC076i006p01539

    Article  CAS  Google Scholar 

  48. Quickenden, T.I., Barnes, G.T.: Evaporation through monolayers—theoretical treatment of the effect of chain length. J. Colloid Interface Sci. 67, 415–422 (1978). https://doi.org/10.1016/0021-9797(78)90230-8

    Article  CAS  Google Scholar 

  49. Wu, M.H., Yang, X.X., Xu, G., Que, C.J., Ma, S.H., Tang, L.: Semivolatile organic compounds in surface microlayer and subsurface water of Dianshan Lake, Shanghai, China: implications for accumulation and interrelationship. Environ. Sci. Pollut. Res. Int. 24, 6572–6580 (2017). https://doi.org/10.1007/s11356-016-8308-3

    Article  PubMed  CAS  Google Scholar 

  50. Franklin, M.P., McDonald, I.R., Bourne, D.G., Owens, N.J., Upstill-Goddard, R.C., Murrell, J.C.: Bacterial diversity in the bacterioneuston (sea surface microlayer): The bacterioneuston through the looking glass. Environ. Microbiol. 7, 723–736 (2005). https://doi.org/10.1111/j.1462-2920.2004.00736.x

  51. Zancker, B., Cunliffe, M., Engel, A.: Bacterial community composition in the sea surface microlayer off the Peruvian coast. Front. Microbiol. 9, 2699 (2018). https://doi.org/10.3389/fmicb.2018.02699

    Article  PubMed  PubMed Central  Google Scholar 

  52. Azevedo JS, Araujo S, Oliveira CS, Correia A, Henriques I (2013) Analysis of antibiotic resistance in bacteria isolated from the surface microlayer and underlying water of an estuarine environment. Microb. Drug Resist. 19, 64–71. https://doi.org/10.1089/mdr.2012.0084

    Article  PubMed  CAS  Google Scholar 

  53. Yang, G.P., Levasseur, M., Michaud, S.: Scarratt, M.: Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer and subsurface water of the Western North Atlantic during spring. Mar. Chem. 96, 315–329 (2005). https://doi.org/10.1016/j.marchem.2005.03.003

    Article  CAS  Google Scholar 

  54. Yang, G.P., Tsunogai, S., Watanabe, S.: Biogeochemistry of dimethylsulfoniopropionate (DMSP) in the surface microlayer and subsurface seawater of Funka Bay, Japan. J Oceanogr. 61, 69–78 (2005). https://doi.org/10.1007/s10872-005-0020-8

    Article  CAS  Google Scholar 

  55. Yang, G.P., Jing, W.W., Kang, Z.Q., Zhang, H.H., Song, G.S.: Spatial variations of dimethylsulfide and dimethylsulfoniopropionate in the surface microlayer and in the subsurface waters of the South China Sea during springtime. Mar. Environ. Res. 65, 85–97 (2008). https://doi.org/10.1016/j.marenvres.2007.09.002

    Article  PubMed  CAS  Google Scholar 

  56. Zhang, H.H., Yang, G.P., Zhu, T.: Distribution and cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the sea-surface microlayer of the Yellow Sea, China, in spring. Cont. Shelf Res. 28, 2417–2427 (2008). https://doi.org/10.1016/j.csr.2008.06.003

    Article  Google Scholar 

  57. Fehon, W.C., Oliver, J.D.: Taxonomy and distribution of surface microlayer bacteria from two estuarine sites. Estuaries. 2, 194–197 (1979). https://doi.org/10.2307/1351735

    Article  Google Scholar 

  58. Zhang, X., Lin, H., Wang, X., Austin, B. Significance of Vibrio species in the marine organic carbon cycle—a review. Science China Earth Sciences. 61, 1357–1368 (2018)

    Article  CAS  Google Scholar 

  59. Kanukollu, S., Wemheuer, B., Herber, J., Billerbeck, S., Lucas, J., Daniel, R., Simon, M., Cypionka, H., Engelen, B.: Distinct compositions of free-living, particle-associated and benthic communities of the Roseobacter group in the North Sea. FEMS Microbiol Ecol. 92(1):fiv145 (2016). https://doi.org/10.1093/femsec/fiv145

    Article  PubMed  CAS  Google Scholar 

  60. Liang, J., Liu, J., Wang, X., Lin, H., Liu, J., Zhou, S., Sun, H., Zhang, XH.: Spatiotemporal dynamics of free-living and particle-associated Vibrio communities in the Northern Chinese marginal seas. Appl Environ Microbiol. (2019). https://doi.org/10.1128/AEM.00217-19

  61. Park, B.S., Guo, R., Lim, W.-A., Ki, J.-S.: Importance of free-living and particle-associated bacteria for the growth of the harmful dinoflagellate Prorocentrum minimum: Evidence in culture stages. Mar Freshw Res. 69, 290–299 (2018)

    Article  Google Scholar 

  62. Varaljay, V.A.: Quantitative analysis of bacterial DMSP-degrading gene diversity, abundance, and expression in marine surface water environments. University of Georgia Athens, GA (2012)

    Google Scholar 

  63. Yang, G.-P., Watanabe, S., Tsunogai, S.: Distribution and cycling of dimethylsulfide in surface microlayer and subsurface seawater. Mar. Chem. 76, 137–153 (2001)

    Article  CAS  Google Scholar 

  64. Zhang, Y., Zhao, Z., Dai, M., Jiao, N., Herndl, G.J.: Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol. Ecol. 23, 2260–2274 (2014). https://doi.org/10.1111/mec.12739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Carpenter, J.H.: The accuracy of the Winkler method for dissolved oxygen analysis1. Limnol. Oceanogr. 10, 135–140 (1965). https://doi.org/10.4319/lo.1965.10.1.0135

    Article  CAS  Google Scholar 

  66. Liu, J., Fu, B., Yang, H., Zhao, M., He, B., Zhang, X.H.: Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: The potential impact of hypoxia and nutrients. Front. Microbiol. 6, 64 (2015). https://doi.org/10.3389/fmicb.2015.00064

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yang, G.-P., Zhang, H,-H., Zhou L.-M., Yang, J.: Temporal and spatial variations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the East China Sea and the Yellow Sea. Cont. Shelf Res. 31, 1325–1335 (2011). https://doi.org/10.1016/j.csr.2011.05.001

  68. Tan, T.-T., Wu, X., Liu, C.-Y., Yang, G.-P. Distributions of dimethylsulfide and its related compounds in the Yangtze (Changjiang) River Estuary and its adjacent waters in early summer. Cont. Shelf Res. 146, 89–101 (2017). https://doi.org/10.1016/j.csr.2017.08.012

    Article  Google Scholar 

  69. Yin, Q., Fu, B., Li, B., Shi, X., Inagaki, F., Zhang, XH.: Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre. PLoS One. 8, e55148 (2013). https://doi.org/10.1371/journal.pone.0055148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Liu, J., Zheng, Y., Lin, H., Wang, X., Li, M., Liu, Y., Yu, M., Zhao, M., Pedentchouk, N., Lea-Smith, D.J., Todd, J.D., Magill, C.R., Zhang, W.J., Zhou, S., Song, D., Zhong, H., Xin, Y., Yu, M., Tian, J., Zhang, X.H.: Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome. 7, 47 (2019). https://doi.org/10.1186/s40168-019-0652-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Levine, N.M., Varaljay, V.A., Toole, D.A., Dacey, J.W., Doney, S.C., Moran, M.A.: Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea. Environ. Microbiol. 14, 1210–1223 (2012). https://doi.org/10.1111/j.1462-2920.2012.02700.x

    Article  PubMed  CAS  Google Scholar 

  72. Walters, W., Hyde, E.R., Berg-Lyons, D., Ackermann, G., Humphrey, G., Parada, A., Gilbert, J.A., Jansson, J.K., Caporaso, J.G., Fuhrman, J.A., Apprill, A., Knight, R.: Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 1, e00009–e00015 (2016). https://doi.org/10.1128/mSystems.00009-15

  73. Todd, J.D., Curson, A.R., Nikolaidou-Katsaraidou, N., Brearley, C.A., Watmough, N.J., Chan, Y., Page, P.C., Sun, L., Johnston, A.W.: Molecular dissection of bacterial acrylate catabolism--unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ. Microbiol. 12, 327–343 (2010). https://doi.org/10.1111/j.1462-2920.2009.02071.x

    Article  PubMed  CAS  Google Scholar 

  74. Curson, A.R., Rogers, R., Todd, J.D., Brearley, C.A., Johnston, A.W.: Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and Rhodobacter sphaeroides. Environ. Microbiol. 10, 757–767 (2008). https://doi.org/10.1111/j.1462-2920.2007.01499.x

    Article  PubMed  CAS  Google Scholar 

  75. Oh HM, Kwon KK, Kang I, Kang SG, Lee JH, Kim SJ, Cho JC (2010) Complete genome sequence of “Candidatus Puniceispirillum marinum” IMCC1322, a representative of the SAR116 clade in the Alphaproteobacteria. J. Bacteriol. 192:3240–3241. https://doi.org/10.1128/JB.00347-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kanukollu, S., Voget, S., Pohlner, M., Vandieken, V., Petersen, J., Kyrpides, N.C., Woyke, T., Shapiro, N., Goker, M., Klenk, H.P., Cypionka, H., Engelen, B.: Genome sequence of Shimia str. SK013, a representative of the Roseobacter group isolated from marine sediment. Stand. Genomic Sci. 11, 25 (2016). https://doi.org/10.1186/s40793-016-0143-0

  77. Zeng, Y.: Phylogenetic diversity of dimethylsulfoniopropionatede-pendent demethylase gene dmdA in distantly related bacteria isolated from Arctic and Antarctic marine environments. Acta Oceanol. Sin. 38, 64–71 (2019). https://doi.org/10.1007/s13131-019-1393-7

  78. Engel, A., Bange, H.W., Cunliffe, M., Burrows, S.M., Friedrichs, G., Galgani, L., H.H., N.H., Johnson, M., Liss, P.S., Quinn, P.K., Schartau, M., Soloviev, A., Stolle, C., Upstill-Goddard, R.C., Van Pinxteren, M., Zäncker, B.: The ocean’s vital skin: toward an integrated understanding of the sea surface microlayer. Front. Mar. Sci. 4, 165 (2017). https://doi.org/10.3389/fmars.2017.00165

  79. Hardy, J.T.: The sea surface microlayer: biology, chemistry and anthropogenic enrichment. Prog. Oceanogr. 11, 307–328 (1982). https://doi.org/10.1016/0079-6611(82)90001-5

    Article  Google Scholar 

  80. Williams, P.M., Carlucci, A.F., Henrichs, S.M., Vleet, E.S.V., Horrigan, S.G., Reid, F.M.H., Robertson, K.J. Chemical and microbiological studies of sea-surface films in the Southern Gulf of California and off the West Coast of Baja California. Mar. Chem. 19, 17–98 (1986). https://doi.org/10.1016/0304-4203(86)90033-2

    Article  CAS  Google Scholar 

  81. Aller, J.Y., Kuznetsova, M.R., Jahns, C.J., Kemp, P.F.: The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol Sci. 36, 801–812 (2005). https://doi.org/10.1016/j.jaerosci.2004.10.012

    Article  CAS  Google Scholar 

  82. Song, Y.K., Hong, SH, Jang, M., Kang, J.H., Kwon, O.Y., Han, GM., Shim, W.J.: Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ. Sci. Technol. 48, 9014–9021 (2014). https://doi.org/10.1021/es501757s

    Article  PubMed  CAS  Google Scholar 

  83. Yoch, D.C.: Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl. Environ. Microbiol. 68, 5804–5815 (2002). https://doi.org/10.1128/aem.68.12.5804-5815.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Dahllof, I., Baillie, H., Kjelleberg, S.: rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl. Environ. Microbiol. 66, 3376–3380 (2000). https://doi.org/10.1128/aem.66.8.3376-3380.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Cunliffe, M., Murrell, J.C.: The sea-surface microlayer is a gelatinous biofilm. ISME J. 3, 1001–1003 (2009). https://doi.org/10.1038/ismej.2009.69

    Article  PubMed  CAS  Google Scholar 

  86. Agogue, H., Casamayor, E.O., Bourrain, M., Obernosterer, I., Joux, F., Herndl, G.J., Lebaron, P.: A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiol. Ecol. 54, 269–280 (2005). https://doi.org/10.1016/j.femsec.2005.04.002

    Article  PubMed  CAS  Google Scholar 

  87. Cunliffe, M., Harrison, E., Salter, M., Schäfer, H., Upstill-Goddard, R.C., Murrell, J.C.: Comparison and validation of sampling strategies for the molecular microbial analysis of surface microlayers. Aquat. Microb. Ecol. 57, 69–77 (2009). https://doi.org/10.3354/ame01330

    Article  Google Scholar 

  88. Yang, G.-P., Tsunogai, S.: Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer of the western North Pacific. Deep-Sea Res. I Oceanogr. Res. Pap. 52, 553–567 (2005). https://doi.org/10.1016/j.dsr.2004.11.013

    Article  CAS  Google Scholar 

  89. Keller, M., Bellows, W., Guillard, R.: Biogenic sulfur in the environment. American Chemical Society (Symposium Series 393), pp 167–182 (1989)

  90. Morris, R.M., Rappe, M.S., Connon, S.A., Vergin, K.L., Siebold, W.A., Carlson, C.A., Giovannoni, S.J.: SAR11 clade dominates ocean surface bacterioplankton communities. Nature. 420, 806–810 (2002). https://doi.org/10.1038/nature01240

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate all the scientists and crew members on the Dongfang Hong 2 during the expedition for their great efforts and help in sample collection. We thank Yahui Gao of Xiamen University for providing Chl a data, and Yu Xin of Ocean University of China for providing nutrient measurements.

Funding

This work was supported by the National Key Research and Development Program of China (grant 2016YFA0601303) and the National Natural Science Foundation of China (grants 91751202, 41730530, and 41476112) to X-HZ, and the Natural Environmental Research Council, UK (grants NE/N002385, NE/P012671, and NE/S001352) to JDT.

Author information

Authors and Affiliations

Authors

Contributions

X-HZ and JDT designed the experiments, analyzed the data, and wrote the manuscript. HS collected samples, performed experiments, analyzed the data, and wrote the manuscript. G-PY, YHZ, and YFZ analyzed the data. SZ performed statistical analysis. ST performed part of the qPCR experiments. Q-YM performed the DMS and DMSP detection. All the authors edited and approved the manuscript.

Corresponding authors

Correspondence to Jonathan D. Todd or Xiao-Hua Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

Five supplementary figures and six supplementary tables are available with this paper. (PDF 1011 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Zhang, Y., Tan, S. et al. DMSP-Producing Bacteria Are More Abundant in the Surface Microlayer than Subsurface Seawater of the East China Sea. Microb Ecol 80, 350–365 (2020). https://doi.org/10.1007/s00248-020-01507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01507-8

Keywords

Navigation